Problem 1.31

Solve the following differential equations:
(a) $y^{\prime}=y / x+1 / y ;$
(b) $y^{\prime}=x y /\left(x^{2}+y^{2}\right)$;
(c) $y^{\prime}=x^{2}+2 x y+y^{2}$;
(d) $y y^{\prime \prime}=2\left(y^{\prime}\right)^{2}$;
(e) $y^{\prime}=(1+x) y^{2} / x^{2}$;
(f) $x^{2} y^{\prime}+x y+y^{2}=0$;
(g) $x y^{\prime}=y(1-\ln x+\ln y)$;
(h) $\left(x+y^{2}\right)+2\left(y^{2}+y+x-1\right) y^{\prime}=0$, using an integrating factor of the form $I(x, y)=e^{a x+b y}$;
(i) $-x y^{\prime}+y=x y^{2}[y(1)=1]$;
(j) $y^{\prime \prime}-(1+x)^{-2}\left(y^{\prime}\right)^{2}=0\left[y(0)=y^{\prime}(0)=1\right]$;
(k) $2 x y y^{\prime}+y^{2}-x^{2}=0$;
(l) $y^{\prime \prime}=\left(y^{\prime}\right)^{2} e^{-y}$ (if $y^{\prime}=1$ at $y=\infty$, find y^{\prime} at $y=0$);
(m) $y^{\prime}=|y-x|$ [if $y(0)=\frac{1}{2}$, find $\left.y(1)\right]$;
(n) $x y^{\prime}=y+x e^{y / x}$;
(o) $y^{\prime}=\left(x^{4}-3 x^{2} y^{2}-y^{3}\right) /\left(2 x^{3} y+3 y^{2} x\right)$;
(p) $\left(x^{2}+y^{2}\right) y^{\prime}=x y, y(e)=e$;
(q) $y^{\prime \prime}+2 y^{\prime} y=0\left[y(0)=y^{\prime}(0)=-1\right]$;
(r) $x^{2} y^{\prime \prime}+x y^{\prime}-y=3 x^{2}[y(1)=y(2)=1]$;
(s) $y^{3}\left(y^{\prime}\right)^{2} y^{\prime \prime}=-\frac{1}{2}\left[y(0)=y^{\prime}(0)=1\right]$
(t) $x y^{\prime}=y+\sqrt{x y}$;
(u) $(x y) y^{\prime}+y \ln y=2 x y[$ try an integrating factor of the form $I=I(y)]$; [TYPO: The first term should be $x y^{\prime}$]
(v) $\left(x \sin y+e^{y}\right) y^{\prime}=\cos y$;
(w) $\left(x+y^{2} x\right) y^{\prime}+x^{2} y^{3}=0[y(1)=1]$;
$(x)(x-1)(x-2) y^{\prime}+y=2[y(0)=1]$;
(y) $y^{\prime}=1 /\left(x+e^{y}\right)$;
(z) $x y^{\prime}+y=y^{2} x^{4}$.

Solution

Part (a)

$$
y^{\prime}=y / x+1 / y
$$

Multiply both sides of the ODE by y.

$$
y y^{\prime}=\frac{y^{2}}{x}+1
$$

Rewrite the left side as follows.

$$
\frac{d}{d x}\left(\frac{1}{2} y^{2}\right)=\frac{y^{2}}{x}+1
$$

Bring the constant out of the derivative and move the y^{2} term to the left.

$$
\frac{1}{2} \frac{d}{d x}\left(y^{2}\right)-\frac{y^{2}}{x}=1
$$

Multiply both sides by 2 to get rid of the $1 / 2$ factor.

$$
\frac{d}{d x}\left(y^{2}\right)-\frac{2}{x} y^{2}=2
$$

This is a first-order inhomogeneous ODE for y^{2} that can be solved with an integrating factor I.

$$
I=e^{\int^{x}-\frac{2}{s} d s}=e^{-2 \ln x}=e^{\ln x^{-2}}=x^{-2}
$$

Multiply both sides of the equation by the integrating factor.

$$
\frac{1}{x^{2}} \frac{d}{d x}\left(y^{2}\right)-\frac{2}{x^{3}} y^{2}=\frac{2}{x^{2}}
$$

The left side is now exact and can be written as $d / d x\left(I y^{2}\right)$ as a result of the product rule.

$$
\frac{d}{d x}\left(\frac{1}{x^{2}} y^{2}\right)=\frac{2}{x^{2}}
$$

Integrate both sides with respect to x.

$$
\frac{1}{x^{2}} y^{2}=-\frac{2}{x}+C
$$

where C is an arbitrary constant. Multiply both sides by x^{2}.

$$
y^{2}=-2 x+C x^{2}
$$

Therefore,

$$
y(x)= \pm \sqrt{-2 x+C x^{2}} .
$$

Part (b)

$$
y^{\prime}=x y /\left(x^{2}+y^{2}\right)
$$

Multiply the numerator and denominator on the right side by $1 / x^{2}$.

$$
y^{\prime}=\frac{x y}{x^{2}+y^{2}} \cdot \frac{\frac{1}{x^{2}}}{\frac{1}{x^{2}}}=\frac{\frac{y}{x}}{1+\frac{y^{2}}{x^{2}}}=\frac{\frac{y}{x}}{1+\left(\frac{y}{x}\right)^{2}}
$$

The right-hand side suggests the substitution,

$$
\begin{aligned}
u=\frac{y}{x} \quad & \rightarrow \quad x u=y \\
u+x \frac{d u}{d x} & =\frac{d y}{d x} .
\end{aligned}
$$

The ODE is transformed to

$$
u+x \frac{d u}{d x}=\frac{u}{1+u^{2}} .
$$

Bring u to the right side.

$$
x \frac{d u}{d x}=-\frac{u^{3}}{1+u^{2}}
$$

This ODE can be solved by separation of variables.

$$
\frac{1+u^{2}}{u^{3}} d u=-\frac{d x}{x}
$$

Integrate both sides.

$$
\begin{gathered}
\int\left(u^{-3}+u^{-1}\right) d u=-\ln |x|+C \\
\frac{1}{-2} u^{-2}+\ln |u|=-\ln |x|+C
\end{gathered}
$$

Bring $\ln |x|$ to the left and combine it with $\ln |u|$.

$$
-\frac{1}{2} \frac{1}{u^{2}}+\ln |x u|=C
$$

Now that the integration is done, change back to the original variable y.

$$
-\frac{1}{2} \frac{x^{2}}{y^{2}}+\ln |y|=C
$$

Multiply both sides by -2 and change the arbitrary constant. Therefore, the solution is expressed implicitly as

$$
\frac{x^{2}}{y^{2}}-\ln y^{2}=A
$$

Part (c)

$$
y^{\prime}=x^{2}+2 x y+y^{2}
$$

The right side is a perfect square.

$$
y^{\prime}=(x+y)^{2}
$$

It suggests the substitution,

$$
\begin{aligned}
u=x+y \quad \rightarrow \quad u-x & =y \\
\frac{d u}{d x}-1 & =\frac{d y}{d x}
\end{aligned}
$$

Plugging these into the ODE gives us

$$
\frac{d u}{d x}-1=u^{2}
$$

This equation can be solved by separation of variables.

$$
\begin{aligned}
& \frac{d u}{d x}=u^{2}+1 \\
& \frac{d u}{u^{2}+1}=d x
\end{aligned}
$$

Integrate both sides.

$$
\arctan u=x+C
$$

Take the tangent of both sides.

$$
u(x)=\tan (x+C)
$$

Now change back to the original variable y.

$$
x+y=\tan (x+C)
$$

Therefore,

$$
y(x)=\tan (x+C)-x .
$$

Part (d)

$$
y y^{\prime \prime}=2\left(y^{\prime}\right)^{2}
$$

Subtract $\left(y^{\prime}\right)^{2}$ from both sides.

$$
y y^{\prime \prime}-\left(y^{\prime}\right)^{2}=\left(y^{\prime}\right)^{2}
$$

Divide both sides by $\left(y^{\prime}\right)^{2}$.

$$
\frac{y y^{\prime \prime}-\left(y^{\prime}\right)^{2}}{\left(y^{\prime}\right)^{2}}=1
$$

Recognize that the left side is the derivative of a quotient.

$$
\frac{d}{d x}\left(-\frac{y}{y^{\prime}}\right)=1
$$

Integrate both sides with respect to x.

$$
-\frac{y}{y^{\prime}}=x+C_{1}
$$

Multiply both sides by -1 .

$$
\frac{y}{y^{\prime}}=-\left(x+C_{1}\right)
$$

Invert both sides.

$$
\frac{y^{\prime}}{y}=-\frac{1}{x+C_{1}}
$$

This ODE can be solved with separation of variables.

$$
\frac{d y}{y}=-\frac{d x}{x+C_{1}}
$$

Integrate both sides.

$$
\ln |y|=-\ln \left|x+C_{1}\right|+C_{2}
$$

Exponentiate both sides.

$$
\begin{gathered}
e^{\ln |y|}=e^{\ln \left|x+C_{1}\right|^{-1}+C_{2}} \\
|y|=\frac{e^{C_{2}}}{\left|x+C_{1}\right|}
\end{gathered}
$$

Remove the absolute value sign on the left by introducing \pm on the right side.

$$
y(x)=\frac{ \pm e^{C_{2}}}{\left|x+C_{1}\right|}
$$

Use new arbitrary constants on the right side, A and B, and drop the absolute value sign-we can do this because A is arbitrary. Therefore,

$$
y(x)=\frac{A}{x+B} .
$$

Part (e)

$$
y^{\prime}=(1+x) y^{2} / x^{2}
$$

This ODE can be solved by separation of variables.

$$
\frac{d y}{d x}=\frac{1+x}{x^{2}} y^{2}
$$

Split up the fraction on the right side with x.

$$
\frac{d y}{y^{2}}=\left(\frac{1}{x^{2}}+\frac{1}{x}\right) d x
$$

Integrate both sides.

$$
-\frac{1}{y}=-\frac{1}{x}+\ln |x|+C
$$

Combine the terms on the right side.

$$
-\frac{1}{y}=\frac{-1+x \ln |x|+C x}{x}
$$

Invert both sides and multiply both sides by -1 .

$$
y=\frac{x}{1-x \ln |x|-C x}
$$

Introduce a new arbitrary constant A to eliminate the minus sign. Therefore,

$$
y(x)=\frac{x}{1-x \ln |x|+A x} .
$$

$\underline{\text { Part (f) }}$

$$
x^{2} y^{\prime}+x y+y^{2}=0
$$

This is a Bernoulli equation, so we start by dividing both sides by y^{2}.

$$
x^{2} y^{-2} y^{\prime}+x y^{-1}+1=0
$$

Now make the substitution,

$$
\begin{aligned}
u & =y^{-1} \\
\frac{d u}{d x} & =-y^{-2} \frac{d y}{d x} \quad \rightarrow \quad-\frac{d u}{d x}=y^{-2} \frac{d y}{d x}
\end{aligned}
$$

Plug these into the ODE.

$$
x^{2}\left(-\frac{d u}{d x}\right)+x u+1=0
$$

Divide both sides by $-x^{2}$.

$$
\frac{d u}{d x}-\frac{1}{x} u-\frac{1}{x^{2}}=0
$$

Bring $1 / x^{2}$ to the right side.

$$
\frac{d u}{d x}-\frac{1}{x} u=\frac{1}{x^{2}}
$$

This is a first-order inhomogeneous ODE that can be solved by multiplying both sides by an integrating factor.

$$
I=e^{\int^{x}-\frac{1}{s} d s}=e^{-\ln x}=x^{-1}
$$

Proceed with the multiplication of both sides by I.

$$
\frac{1}{x} \frac{d u}{d x}-\frac{1}{x^{2}} u=\frac{1}{x^{3}}
$$

The left side is now exact and can be written as $d / d x(I u)$ as a result of the product rule.

$$
\frac{d}{d x}\left(\frac{1}{x} u\right)=\frac{1}{x^{3}}
$$

Integrate both sides with respect to x.

$$
\frac{1}{x} u=-\frac{1}{2 x^{2}}+C
$$

Multiply both sides by x to solve for u.

$$
u(x)=-\frac{1}{2 x}+C x
$$

Now that the integration is done, change back to the original variable y.

$$
\frac{1}{y}=-\frac{1}{2 x}+C x
$$

Combine the terms on the right side and use a new constant A for $2 C$.

$$
\frac{1}{y}=\frac{-1+2 C x^{2}}{2 x} \rightarrow y(x)=\frac{2 x}{A x^{2}-1}
$$

Part (g)

$$
x y^{\prime}=y(1-\ln x+\ln y)
$$

Divide both sides by x and combine the logarithms on the right side.

$$
y^{\prime}=\frac{y}{x}\left(1-\ln \frac{y}{x}\right)
$$

The right side suggests the subsitution,

$$
\begin{aligned}
& u=\frac{y}{x} \rightarrow \quad x u=y \\
& u+x \frac{d u}{d x}=\frac{d y}{d x} .
\end{aligned}
$$

Plug these expressions into the ODE.

$$
u+x \frac{d u}{d x}=u(1-\ln u)
$$

Subtract u from both sides.

$$
x \frac{d u}{d x}=-u \ln u
$$

This ODE can be solved by separation of variables.

$$
\frac{d u}{u \ln u}=-\frac{d x}{x}
$$

Integrate both sides.

$$
\int \frac{d u}{u \ln u}=-\ln |x|+C
$$

Use the following substitution to evaluate the integral on the left.

$$
\begin{aligned}
v & =\ln u \\
d v & =\frac{d u}{u}
\end{aligned}
$$

The integral becomes

$$
\int \frac{d v}{v}=-\ln |x|+C
$$

So we have

$$
\ln |v|=-\ln |x|+C .
$$

Exponentiate both sides.

$$
|v|=|x|^{-1} e^{C}
$$

Introduce \pm on the right side to eliminate the absolute value sign on the left.

$$
v=\frac{ \pm e^{C}}{|x|}
$$

Use a new arbitrary constant A.

$$
v=\frac{A}{|x|}
$$

It's because A is arbitrary that we can drop the absolute value sign in the denominator. Change back to the variable u.

$$
\ln u=\frac{A}{x}
$$

Exponentiate both sides.

$$
u=e^{A / x}
$$

Now change back to the original variable y.

$$
\frac{y}{x}=e^{A / x}
$$

Multiply both sides by x to solve for y. Therefore,

$$
y(x)=x e^{A / x} .
$$

Part (h)

$\left(x+y^{2}\right)+2\left(y^{2}+y+x-1\right) y^{\prime}=0$, using an integrating factor of the form $I(x, y)=e^{a x+b y}$
This differential equation is of the form,

$$
M(x, y)+N(x, y) \frac{d y}{d x}=0 .
$$

Multiplying both sides by an integrating factor $I(x, y)$ gives

$$
\begin{equation*}
I(x, y) M(x, y)+I(x, y) N(x, y) \frac{d y}{d x}=0 . \tag{1}
\end{equation*}
$$

Our aim is to determine the constants, a and b, in the provided function so that

$$
\frac{\partial}{\partial y} I(x, y) M(x, y)=\frac{\partial}{\partial x} I(x, y) N(x, y) .
$$

This is the condition that has to hold in order for the ODE to be exact. Using the product rule, we have for the left side

$$
\begin{aligned}
\frac{\partial}{\partial y} I(x, y) M(x, y) & =\frac{\partial}{\partial y}\left(x+y^{2}\right) e^{a x+b y} \\
& =2 y e^{a x+b y}+\left(x+y^{2}\right) b e^{a x+b y} \\
& =\left[2 y+b\left(x+y^{2}\right)\right] e^{a x+b y} .
\end{aligned}
$$

Using the product rule, we have for the right side

$$
\begin{aligned}
\frac{\partial}{\partial x} I(x, y) N(x, y) & =\frac{\partial}{\partial x} 2\left(y^{2}+y+x-1\right) e^{a x+b y} \\
& =2 e^{a x+b y}+2\left(y^{2}+y+x-1\right) a e^{a x+b y} \\
& =2\left[1+a\left(y^{2}+y+x-1\right)\right] e^{a x+b y} .
\end{aligned}
$$

In order for these partial derivatives to be equal, we require that

$$
2 y+b\left(x+y^{2}\right)=2\left[1+a\left(y^{2}+y+x-1\right)\right] .
$$

Expand both sides of the equation.

$$
2 y+b x+b y^{2}=2+2 a y^{2}+2 a y+2 a x-2 a
$$

This equation can only be true if we set $a=1$ and $b=2$. Thus, our integrating factor is $I(x, y)=e^{x+2 y}$. The ODE we started with becomes exact as a result of multiplying both sides by this integrating factor. The fact that it is exact means there exists a potential function $\phi(x, y)$ such that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=I(x, y) M(x, y) \\
& \frac{\partial \phi}{\partial y}=I(x, y) N(x, y) .
\end{aligned}
$$

The ODE in equation (1) can hence be written as

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{2}
\end{equation*}
$$

Recall that for a function of two variables $\phi(x, y)$, its differential is defined as

$$
d \phi=\frac{\partial \phi}{\partial x} d x+\frac{\partial \phi}{\partial y} d y .
$$

Dividing both sides by $d x$ yields the relationship between the total derivative of a function and its partial derivatives.

$$
\frac{d \phi}{d x}=\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}
$$

So equation (2) reduces to

$$
\frac{d \phi}{d x}=0 .
$$

Integrating both sides with respect to x gives

$$
\phi(x, y)=A,
$$

where A is an arbitrary constant. Our goal now is to find this potential function.

$$
\begin{align*}
\frac{\partial \phi}{\partial x} & =\left(x+y^{2}\right) e^{x+2 y} \tag{3}\\
\frac{\partial \phi}{\partial y} & =2\left(y^{2}+y+x-1\right) e^{x+2 y} \tag{4}
\end{align*}
$$

Since equation (3) looks simpler, integrate both sides of it partially with respect to x to solve for ϕ. Note that we would arrive at the same answer if we integrated both sides of equation (4) partially with respect to y.

$$
\begin{aligned}
\phi(x, y) & =\left.\int^{x} \frac{\partial \phi}{\partial x}\right|_{x=s} d s+f(y) \\
& =\int^{x}\left(s+y^{2}\right) e^{s+2 y} d s+f(y) \\
& =\int^{x}\left(s e^{s} e^{2 y}+y^{2} e^{s} e^{2 y}\right) d s+f(y) \\
& =e^{2 y} \int^{x} s e^{s} d s+y^{2} e^{2 y} \int^{x} e^{s} d s+f(y) \\
& =e^{2 y}(x-1) e^{x}+y^{2} e^{2 y} e^{x}+f(y) \\
& =\left(x-1+y^{2}\right) e^{x+2 y}+f(y),
\end{aligned}
$$

where $f(y)$ is an arbitrary function. To determine it, differentiate $\phi(x, y)$ with respect to y.

$$
\frac{\partial \phi}{\partial y}=2\left(y^{2}+y+x-1\right) e^{x+2 y}+f^{\prime}(y)
$$

In order for this equation to be consistent with equation (4), we require that $f^{\prime}(y)=0$, which means $f(y)=B$, a constant. Consequently,

$$
\phi(x, y)=\left(x-1+y^{2}\right) e^{x+2 y}+B
$$

So for the general solution to the ODE, we have

$$
\left(x-1+y^{2}\right) e^{x+2 y}+B=A
$$

Subtract B from both sides and introduce a new arbitrary constant C. Therefore,

$$
\left(x-1+y^{2}\right) e^{x+2 y}=C .
$$

$\underline{\text { Part (i) }}$

$$
-x y^{\prime}+y=x y^{2}[y(1)=1]
$$

This is a Bernoulli equation. First get it into standard form by dividing both sides by $-x$.

$$
y^{\prime}-\frac{1}{x} y=-y^{2}
$$

Divide both sides now by y^{2}.

$$
y^{-2} y^{\prime}-\frac{1}{x} y^{-1}=-1
$$

Make the substitution,

$$
\begin{aligned}
u & =y^{-1} \\
\frac{d u}{d x} & =-y^{-2} \frac{d y}{d x} \quad \rightarrow \quad-\frac{d u}{d x}=y^{-2} \frac{d y}{d x}
\end{aligned}
$$

Plug these expressions into the ODE.

$$
-\frac{d u}{d x}-\frac{1}{x} u=-1
$$

Multiply both sides by -1 .

$$
\frac{d u}{d x}+\frac{1}{x} u=1
$$

This is a first-order inhomogeneous equation that can be solved by multiplying both sides by an integrating factor I.

$$
I=e^{\int^{x} \frac{1}{s} d s}=e^{\ln x}=x
$$

Proceed with the multiplication.

$$
x \frac{d u}{d x}+u=x
$$

The left side is now exact and can be written as $d / d x(I u)$ as a result of the product rule.

$$
\frac{d}{d x}(x u)=x
$$

Integrate both sides of the equations with respect to x.

$$
x u=\frac{1}{2} x^{2}+C
$$

Divide both sides by x to solve for u.

$$
u(x)=\frac{1}{2} x+\frac{C}{x}
$$

Now that the integration is done, change back to the original variable y.

$$
\frac{1}{y}=\frac{1}{2} x+\frac{C}{x}
$$

Write the right side as one term by combining the fractions.

$$
\frac{1}{y}=\frac{x^{2}+2 C}{2 x}
$$

Invert both sides to solve for y.

$$
y(x)=\frac{2 x}{x^{2}+2 C}
$$

Now that we have the general solution we can apply the initial condition to determine the constant in the denominator.

$$
y(1)=\frac{2}{1+2 C}=1
$$

Solving this equation yields $C=1 / 2$. Therefore,

$$
y(x)=\frac{2 x}{x^{2}+1}
$$

Figure 1: Plot of the solution for $-10<x<10$.

Part (j)

$$
y^{\prime \prime}-(1+x)^{-2}\left(y^{\prime}\right)^{2}=0\left[y(0)=y^{\prime}(0)=1\right]
$$

This ODE is first-order in y^{\prime}, so make the substitution,

$$
\begin{aligned}
u & =y^{\prime} \\
u^{\prime} & =y^{\prime \prime} .
\end{aligned}
$$

Plugging these expressions into the ODE yields

$$
u^{\prime}-\frac{1}{(1+x)^{2}} u^{2}=0
$$

which can be solved by separation of variables. Bring the second term over to the right.

$$
\frac{d u}{d x}=\frac{1}{(1+x)^{2}} u^{2}
$$

Separate variables.

$$
\frac{d u}{u^{2}}=\frac{d x}{(1+x)^{2}}
$$

Integrate both sides.

$$
-\frac{1}{u}=-\frac{1}{1+x}+C
$$

Multiply both sides by -1 and combine the two terms on the right into one.

$$
\frac{1}{u}=\frac{1-C(1+x)}{1+x}
$$

Invert both sides now to solve for u.

$$
u(x)=\frac{1+x}{1-C(1+x)}
$$

Now that the integration is done, change back to the original variable y.

$$
y^{\prime}=\frac{1+x}{1-C(1+x)}
$$

At this point we can apply the first initial condition, $y^{\prime}(0)=1$, to determine C.

$$
y^{\prime}(0)=\frac{1}{1-C}=1
$$

Solving for C gives $C=0$. So we have

$$
y^{\prime}=1+x .
$$

Integrate both sides with respect to x to solve for y.

$$
y(x)=x+\frac{1}{2} x^{2}+D
$$

Use the second initial condition, $y(0)=1$, to determine D.

$$
y(0)=D=1
$$

Therefore,

$$
y(x)=x+\frac{1}{2} x^{2}+1 .
$$

Part (k)

$$
2 x y y^{\prime}+y^{2}-x^{2}=0
$$

Rewrite the term with the derivative as follows.

$$
x \frac{d}{d x}\left(y^{2}\right)+y^{2}-x^{2}=0
$$

Bring the x^{2} term to the right.

$$
x \frac{d}{d x}\left(y^{2}\right)+y^{2}=x^{2}
$$

Notice that the left side is exact and can be written as $d / d x\left(x y^{2}\right)$ as a result of the product rule.

$$
\frac{d}{d x}\left(x y^{2}\right)=x^{2}
$$

Integrate both sides with respect to x.

$$
x y^{2}=\frac{1}{3} x^{3}+C
$$

Divide both sides by x.

$$
y^{2}=\frac{1}{3} x^{2}+\frac{C}{x}
$$

Therefore,

$$
y(x)= \pm \sqrt{\frac{1}{3} x^{2}+\frac{C}{x}} .
$$

Part (1)

$$
y^{\prime \prime}=\left(y^{\prime}\right)^{2} e^{-y}\left(\text { if } y^{\prime}=1 \text { at } y=\infty, \text { find } y^{\prime} \text { at } y=0\right)
$$

Divide both sides by y^{\prime}.

$$
\frac{y^{\prime \prime}}{y^{\prime}}=y^{\prime} e^{-y}
$$

Rewrite the left side as follows.

$$
\frac{d}{d x} \ln y^{\prime}=y^{\prime} e^{-y}
$$

Rewrite the right side as follows.

$$
\frac{d}{d x} \ln y^{\prime}=\frac{d}{d x}\left(-e^{-y}\right)
$$

Integrate both sides with respect to x.

$$
\ln y^{\prime}=-e^{-y}+C
$$

Exponentiate both sides.

$$
y^{\prime}=e^{C} e^{-e^{-y}}
$$

Use a new arbitrary constant A.

$$
\begin{equation*}
y^{\prime}=A e^{-e^{-y}} \tag{1}
\end{equation*}
$$

Now that we solved for y^{\prime} in terms of y, we can use the provided boundary condition to determine A. As $y \rightarrow \infty, e^{-y} \rightarrow 0$, so we have

$$
\lim _{y \rightarrow \infty} y^{\prime}=A e^{0}=A=1
$$

Now that we know A, we can find y^{\prime} when $y=0$.

$$
\lim _{y \rightarrow 0} y^{\prime}=e^{-e^{0}}
$$

Therefore, y^{\prime} at $y=0$ is equal to e^{-1}. The general solution for y can be obtained by separation of variables in equation (1).

$$
e^{e^{-y}} d y=A d x
$$

Integrate both sides.

$$
\int^{y} e^{e^{-s}} d s=A x+B
$$

The solution is only implicit for y.

Part (m)

$$
y^{\prime}=|y-x|\left[\text { if } y(0)=\frac{1}{2}, \text { find } y(1)\right]
$$

The right side prompts the substitution,

$$
\begin{aligned}
u & =y-x \\
\frac{d u}{d x} & =\frac{d y}{d x}-1 \quad \rightarrow \quad \frac{d u}{d x}+1=\frac{d y}{d x} .
\end{aligned}
$$

Plug these expressions into the ODE.

$$
\frac{d u}{d x}+1=|u|
$$

Bring 1 to the right side.

$$
\frac{d u}{d x}=|u|-1
$$

The absolute value is defined as

$$
\begin{cases}u & u>0 \\ -u & u<0\end{cases}
$$

so there are two cases to consider here.
Case I: $u>0$
Here we consider the first case.

$$
\frac{d u}{d x}=u-1
$$

This equation can be solved with separation of variables.

$$
\frac{d u}{u-1}=d x
$$

Integrate both sides.

$$
\ln |u-1|=x+C
$$

Exponentiate both sides.

$$
|u-1|=e^{x} e^{C}
$$

Eliminate the absolute value sign by introducing \pm on the right side.

$$
u-1= \pm e^{C} e^{x}
$$

Use a new arbitrary constant.

$$
u-1=A e^{x}
$$

Bring 1 to the right side to solve for u.

$$
u(x)=1+A e^{x}, \quad u>0
$$

Change back now to the original variable y.

$$
y-x=1+A e^{x}
$$

Thus, for the first case we have

$$
y(x)=x+1+A e^{x}, \quad y-x>0 .
$$

Case II: $u<0$

Here we consider the second case.

$$
\frac{d u}{d x}=-u-1
$$

This equation can be solved with separation of variables.

$$
\frac{d u}{u+1}=-d x
$$

Integrate both sides.

$$
\ln |u+1|=-x+C
$$

Exponentiate both sides.

$$
|u+1|=e^{-x} e^{C}
$$

Eliminate the absolute value sign by introducing \pm on the right side.

$$
u+1= \pm e^{C} e^{-x}
$$

Use a new arbitrary constant.

$$
u+1=B e^{-x}
$$

Bring 1 to the right side to solve for u.

$$
u(x)=-1+B e^{-x}, \quad u<0
$$

Change back now to the original variable y.

$$
y-x=-1+B e^{-x}
$$

Thus, for the second case we have

$$
y(x)=x-1+B e^{-x}, \quad y-x<0 .
$$

Putting the results of these two cases together, we have for the general solution

$$
y(x)=\left\{\begin{array}{ll}
x+1+A e^{x} & y-x>0 \\
x-1+B e^{-x} & y-x<0
\end{array} .\right.
$$

To determine one of the constants, we use the provided initial condition, $y(0)=\frac{1}{2}$. Since y is bigger than x, we apply it to the first case.

$$
y(0)=1+A=\frac{1}{2} \quad \rightarrow \quad A=-\frac{1}{2}
$$

The solution is now

$$
y(x)=\left\{\begin{array}{ll}
x+1-\frac{1}{2} e^{x} & y-x>0 \\
x-1+B e^{-x} & y-x<0
\end{array} .\right.
$$

To determine the second unknown constant, we require that the solution be continuous everywhere, that is, when $y-x=0$, the two expressions for $y(x)$ must yield the same result. Bring x to the left side.

$$
y-x=\left\{\begin{aligned}
1-\frac{1}{2} e^{x} & =0 \\
-1+B e^{-x} & =0
\end{aligned}\right.
$$

We have here a system of two equations for two unknowns, x and B. Solving the system gives us $x=\ln 2$ and $B=2$. Therefore, the solution to the ODE is

$$
y(x)=\left\{\begin{array}{ll}
x+1-\frac{1}{2} e^{x} & y-x>0 \\
x-1+2 e^{-x} & y-x<0
\end{array} .\right.
$$

Although we have determined the constants, this equation is only implicit for $y(x)$. Our aim now is to write an explicit expression for y, that is, one that depends only on x. The interpretation of this solution is as follows: above the line $y=x$, we use the first expression for $y(x)$ and below the same line, we use the second expression for $y(x)$. What we have to do is graph the functions and find out for what values of x this occurs.

Figure 2: This is a plot of three functions for $-4<x<4$. The first expression for $y(x)$ is in red, the second expression for $y(x)$ is in blue, and the line, $y=x$, is in green.

As can be seen from the graph, the red line is above the green line to the left of the point of intersection, $x=\ln 2$. Also, the blue line is below the green line to the right of $x=\ln 2$.
Therefore, the explicit solution for $y(x)$ is this.

$$
y(x)= \begin{cases}x+1-\frac{1}{2} e^{x} & x<\ln 2 \\ x-1+2 e^{-x} & x \geq \ln 2\end{cases}
$$

Figure 3: Plot of the solution for $-4<x<4$.
Finally, we are in a position to answer the question. Since $\ln 2 \approx 0.69$, we use the second expression to determine $y(1)$.

$$
y(1)=2 e^{-1} \approx 0.73
$$

Part (n)

$$
x y^{\prime}=y+x e^{y / x}
$$

Divide both sides of the equation by x.

$$
y^{\prime}=\frac{y}{x}+e^{y / x}
$$

The right side prompts the substitution,

$$
\begin{aligned}
u=\frac{y}{x} & \rightarrow \quad x u=y \\
u+x \frac{d u}{d x} & =\frac{d y}{d x} .
\end{aligned}
$$

Plugging these expressions into the ODE, we have

$$
u+x \frac{d u}{d x}=u+e^{u} .
$$

Cancel u from both sides.

$$
x \frac{d u}{d x}=e^{u}
$$

This equation can be solved by separation of variables.

$$
e^{-u} d u=\frac{d x}{x}
$$

Integrate both sides.

$$
-e^{-u}=\ln |x|+C
$$

Multiply both sides by -1 .

$$
e^{-u}=-\ln |x|-C
$$

Take the logarithm of both sides.

$$
-u=\ln (-\ln |x|-C)
$$

Use a new arbitrary constant ln B, remove the minus sign in front of the logarithm by inverting its argument, and multiply both sides by -1 to solve for u.

$$
u(x)=-\ln \left(\ln \frac{1}{|x|}+\ln B\right)
$$

Now that the integration is done, change back to the original variable y. Combine the logarithms and remove the minus sign in front of the logarithm by inverting its argument.

$$
\frac{y}{x}=\ln \frac{1}{\ln \frac{B}{|x|}}
$$

The point of using $\ln B$ for the new arbitrary constant is so that B is on top of the absolute value sign here. This allows us to drop the absolute value sign because it doesn't matter whether x is positive or negative. Multiply both sides by x to solve for y. Therefore,

$$
y(x)=x \ln \frac{1}{\ln \frac{B}{x}} .
$$

Part (o)

$$
y^{\prime}=\left(x^{4}-3 x^{2} y^{2}-y^{3}\right) /\left(2 x^{3} y+3 y^{2} x\right)
$$

Bring all terms over to the left side.

$$
y^{3}+3 x^{2} y^{2}-x^{4}+\left(2 x^{3} y+3 y^{2} x\right) \frac{d y}{d x}=0
$$

This ODE is of the form,

$$
M(x, y)+N(x, y) \frac{d y}{d x}=0 .
$$

Check to see whether $M_{y}=N_{x}$ or not. It it's not, then we'll have to multiply both sides by an integrating factor.

$$
\begin{aligned}
& \frac{\partial M}{\partial y}=3 y^{2}+6 x^{2} y \\
& \frac{\partial N}{\partial x}=6 x^{2} y+3 y^{2}
\end{aligned}
$$

$M_{y}=N_{x}$, so the ODE is exact. This implies that there exists a potential function $\phi(x, y)$ such that

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M(x, y) \tag{1}\\
& \frac{\partial \phi}{\partial y}=N(x, y) \tag{2}
\end{align*}
$$

The ODE thus becomes

$$
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0
$$

Recall that the differential of a function of two variables $\phi(x, y)$ is

$$
d \phi=\frac{\partial \phi}{\partial x} d x+\frac{\partial \phi}{\partial y} d y .
$$

Divide both sides by $d x$ to obtain the relationship between the total derivative of $\phi(x, y)$ and the partial derivatives of $\phi(x, y)$.

$$
\frac{d \phi}{d x}=\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}
$$

Consequently, the ODE becomes

$$
\frac{d \phi}{d x}=0
$$

Integrate both sides with respect to x to obtain the solution to the ODE.

$$
\phi(x, y)=A
$$

where A is an arbitrary constant. Our aim now is to determine $\phi(x, y)$ using equations (1) and (2).

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=y^{3}+3 x^{2} y^{2}-x^{4} \tag{1}\\
& \frac{\partial \phi}{\partial y}=2 x^{3} y+3 y^{2} x \tag{2}
\end{align*}
$$

Integrate the second equation partially with respect to y to solve for ϕ. Note that we could integrate the first equation partially with respect to x to solve for ϕ as well. We would get the same answer either way.

$$
\begin{aligned}
\phi(x, y) & =\left.\int^{y} \frac{\partial \phi}{\partial y}\right|_{y=s} d s+f(x) \\
& =\int^{y}\left(2 x^{3} s+3 s^{2} x\right) d s+f(x) \\
& =\int^{y} 2 x^{3} s d s+\int^{y} 3 s^{2} x d s+f(x) \\
& =2 x^{3} \int^{y} s d s+3 x \int^{y} s^{2} d s+f(x) \\
& =x^{3} y^{2}+x y^{3}+f(x)
\end{aligned}
$$

In order to determine the arbitrary function $f(x)$, we have to use equation (1). Differentiate the expression we just obtained with respect to x.

$$
\frac{\partial \phi}{\partial x}=3 x^{2} y^{2}+y^{3}+f^{\prime}(x)
$$

Comparing this with equation (1), we see that $f^{\prime}(x)$ has to be equal to $-x^{4}$ in order to be consistent. Hence, $f(x)=-x^{5} / 5$. Therefore, the general solution to the ODE is

$$
x^{3} y^{2}+x y^{3}-\frac{x^{5}}{5}=A
$$

Part (p)

$$
\left(x^{2}+y^{2}\right) y^{\prime}=x y, y(e)=e
$$

Divide both sides by $x^{2}+y^{2}$ to solve for y^{\prime}.

$$
y^{\prime}=\frac{x y}{x^{2}+y^{2}}
$$

Multiply the numerator and denominator on the right side by $1 / x^{2}$.

$$
y^{\prime}=\frac{x y}{x^{2}+y^{2}} \cdot \frac{\frac{1}{x^{2}}}{\frac{1}{x^{2}}}=\frac{\frac{y}{x}}{1+\frac{y^{2}}{x^{2}}}=\frac{\frac{y}{x}}{1+\left(\frac{y}{x}\right)^{2}}
$$

The right-hand side suggests the substitution,

$$
\begin{aligned}
u=\frac{y}{x} & \rightarrow \quad x u
\end{aligned}=y .\left\{\begin{array}{rl}
u+x & \frac{d u}{d x}
\end{array}=\frac{d y}{d x} .\right.
$$

The ODE is transformed to

$$
u+x \frac{d u}{d x}=\frac{u}{1+u^{2}}
$$

Bring u to the right side.

$$
x \frac{d u}{d x}=-\frac{u^{3}}{1+u^{2}}
$$

This ODE can be solved by separation of variables.

$$
\frac{1+u^{2}}{u^{3}} d u=-\frac{d x}{x}
$$

Integrate both sides.

$$
\begin{gathered}
\int\left(u^{-3}+u^{-1}\right) d u=-\ln |x|+C \\
\frac{1}{-2} u^{-2}+\ln |u|=-\ln |x|+C
\end{gathered}
$$

Bring $\ln |x|$ to the left and combine it with $\ln |u|$.

$$
-\frac{1}{2} \frac{1}{u^{2}}+\ln |x u|=C
$$

Now that the integration is done, change back to the original variable y.

$$
-\frac{1}{2} \frac{x^{2}}{y^{2}}+\ln |y|=C
$$

Multiply both sides by -2 .

$$
\frac{x^{2}}{y^{2}}-2 \ln y=-2 C
$$

We can determine $-2 C$ by using the provided boundary condition, $y(e)=e$.

$$
1-2 \ln e=-2 C \quad \rightarrow \quad-2 C=-1
$$

Therefore,

$$
\frac{x^{2}}{y^{2}}-2 \ln y=-1
$$

Part (q)

$$
y^{\prime \prime}+2 y^{\prime} y=0\left[y(0)=y^{\prime}(0)=-1\right]
$$

The left side of the ODE can be written as follows.

$$
\frac{d}{d x}\left(\frac{d y}{d x}\right)+\frac{d}{d x}\left(y^{2}\right)=0
$$

Integrate both sides with respect to x.

$$
\frac{d y}{d x}+y^{2}=A
$$

We can determine A by using the provided initial conditions. When $x=0, y$ and $d y / d x$ are equal to -1 .

$$
-1+(-1)^{2}=A \quad \rightarrow \quad A=0
$$

so the ODE simplifies to

$$
\frac{d y}{d x}+y^{2}=0
$$

Move y^{2} over to the right side.

$$
\frac{d y}{d x}=-y^{2}
$$

This ODE can be solved by separation of variables.

$$
y^{-2} d y=-d x
$$

Integrate both sides.

$$
-\frac{1}{y}=-x+B
$$

Plug in the initial conditions once again to determine B.

$$
1=B
$$

So we have

$$
-\frac{1}{y}=-x+1
$$

Multiply both sides by -1 .

$$
\frac{1}{y}=x-1
$$

Invert both sides to solve for y. Therefore,

$$
y(x)=\frac{1}{x-1} .
$$

Part (r)

$$
x^{2} y^{\prime \prime}+x y^{\prime}-y=3 x^{2}[y(1)=y(2)=1]
$$

This is an inhomogeneous ODE, so the general solution is the sum of the complementary solution y_{c} and the particular solution y_{p}.

$$
y(x)=y_{c}+y_{p}
$$

We'll start by finding y_{c}, which is the solution to the associated homogeneous equation.

$$
x^{2} y_{c}^{\prime \prime}+x y_{c}^{\prime}-y_{c}=0
$$

This ODE is equidimensional since the change in scale $x \rightarrow a x$ leaves the equation unchanged. Thus, the solution is of the form $y_{c}=x^{r}$. Our task now is to plug this expression into the ODE to determine the values of r for which it holds.

$$
y_{c}=x^{r} \quad \rightarrow \quad y_{c}^{\prime}=r x^{r-1} \quad \rightarrow \quad y_{c}^{\prime \prime}=r(r-1) x^{r-2}
$$

Substituting these expressions into the ODE yields

$$
r(r-1) x^{r}+r x^{r}-x^{r}=0 .
$$

Divide both sides by x^{r} to obtain the indicial equation.

$$
r(r-1)+r-1=0
$$

r cancels out.

$$
r^{2}-1=0
$$

Factor the left side.

$$
(r-1)(r+1)=0
$$

Thus, $r=1$ or $r=-1$. We can now write the solution for the associated homogeneous equation.

$$
y_{c}(x)=C_{1} x^{1}+C_{2} x^{-1}
$$

Our next goal is to determine the particular solution y_{p}. To do this, we will use the method of variation of parameters. That is, we will assume y_{p} has the form

$$
y_{p}=u_{1}(x) x+u_{2}(x) x^{-1}
$$

where u_{1} and u_{2} satisfy

$$
\begin{aligned}
x u_{1}^{\prime}+x^{-1} u_{2}^{\prime} & =0 \\
u_{1}^{\prime}+(-1) x^{-2} u_{2}^{\prime} & =\frac{3 x^{2}}{x^{2}}=3 .
\end{aligned}
$$

Solve this system of equations for u_{1}^{\prime} and u_{2}^{\prime} using Cramer's rule.

$$
\begin{aligned}
& u_{1}^{\prime}=\frac{\left|\begin{array}{cc}
0 & x^{-1} \\
3 & -x^{-2}
\end{array}\right|}{\left|\begin{array}{cc}
x & x^{-1} \\
1 & -x^{-2}
\end{array}\right|}=\frac{-\frac{3}{x}}{-\frac{2}{x}}=\frac{3}{2} \\
& u_{2}^{\prime}=\frac{\left|\begin{array}{cc}
x & 0 \\
1 & 3
\end{array}\right|}{\left|\begin{array}{cc}
x & x^{-1} \\
1 & -x^{-2}
\end{array}\right|}=\frac{3 x}{-\frac{2}{x}}=-\frac{3}{2} x^{2}
\end{aligned}
$$

Now that we know u_{1}^{\prime} and u_{2}^{\prime}, we can determine u_{1} and u_{2} by integration. We're not concerned with the integration constants.

$$
\begin{aligned}
& u_{1}(x)=\frac{3}{2} x \\
& u_{2}(x)=-\frac{1}{2} x^{3}
\end{aligned}
$$

Hence, the particular solution is

$$
y_{p}=\frac{3}{2} x^{2}-\frac{1}{2} x^{2}=x^{2} .
$$

Therefore, the general solution is

$$
y(x)=C_{1} x+C_{2} x^{-1}+x^{2} .
$$

We can now determine the two arbitrary constants, C_{1} and C_{2}, by applying the provided boundary conditions, $y(1)=1$ and $y(2)=1$. The result is the following system of equations.

$$
\begin{aligned}
& y(1)=C_{1}+C_{2}+1=1 \\
& y(2)=2 C_{1}+\frac{C_{2}}{2}+4=1
\end{aligned}
$$

Solving the system gives us $C_{1}=-2$ and $C_{2}=2$. Therefore,

$$
y(x)=-2 x+\frac{2}{x}+x^{2} .
$$

Figure 4: Plot of the solution for $-5<x<5$.

Part (s)

$$
y^{3}\left(y^{\prime}\right)^{2} y^{\prime \prime}=-\frac{1}{2}\left[y(0)=y^{\prime}(0)=1\right]
$$

This ODE is second-order and autonomous, meaning the independent variable x does not appear in the equation. We can hence make the substitution,

$$
\begin{aligned}
y^{\prime}(x) & =u(y) \\
y^{\prime \prime}(x) & =\frac{d u}{d y} \frac{d y}{d x}=u^{\prime}(y) u(y)
\end{aligned}
$$

to reduce the equation's order and make it easier to solve. Plugging these expressions into the ODE gives us

$$
y^{3} u^{2} u^{\prime} u=-\frac{1}{2}
$$

which can be solved by separation of variables.

$$
y^{3} u^{3} \frac{d u}{d y}=-\frac{1}{2}
$$

Separate variables.

$$
u^{3} d u=-\frac{1}{2} y^{-3} d y
$$

Integrate both sides.

$$
\frac{1}{4} u^{4}=\frac{1}{4} y^{-2}+\frac{C}{4}
$$

Multiply both sides by 4 .

$$
u^{4}=\frac{1}{y^{2}}+C
$$

Take the fourth root of both sides to solve for u.

$$
u(y)=\sqrt[4]{\frac{1}{y^{2}}+C}
$$

Now that we have u, change back to the original variable y.

$$
y^{\prime}(x)=\sqrt[4]{\frac{1}{y^{2}}+C}
$$

At this point, use the provided boundary conditions, $y(0)=1$ and $y^{\prime}(0)=1$, to determine the integration constant C.

$$
y^{\prime}(0)=\sqrt[4]{\frac{1}{[y(0)]^{2}}+C} \quad \rightarrow \quad 1=\sqrt[4]{1+C} \quad \rightarrow \quad C=0
$$

The ODE has thus been simplified to

$$
\frac{d y}{d x}=\sqrt[4]{\frac{1}{y^{2}}}=\frac{1}{y^{1 / 2}}
$$

which can be solved by separation of variables.

$$
y^{1 / 2} d y=d x
$$

Integrate both sides.

$$
\frac{2}{3} y^{3 / 2}=x+B
$$

Use the boundary condition $y(0)=1$ to determine B.

$$
\frac{2}{3}=B
$$

So we have

$$
\frac{2}{3} y^{3 / 2}=x+\frac{2}{3}
$$

Multiply both sides by $3 / 2$.

$$
y^{3 / 2}=\frac{3}{2} x+1
$$

Raise both sides to the $2 / 3$ power to solve for y. Therefore,

$$
y(x)=\left(\frac{3}{2} x+1\right)^{2 / 3}
$$

Figure 5: Plot of the solution for $-3<x<3$.

Part (t)

$$
x y^{\prime}=y+\sqrt{x y}
$$

Divide both sides by x.

$$
y^{\prime}=\frac{y}{x}+\frac{1}{x} \sqrt{x y}
$$

Bring x inside the square root.

$$
y^{\prime}=\frac{y}{x}+\sqrt{\frac{y}{x}}
$$

The right side prompts the substitution,

$$
\begin{aligned}
& u=\frac{y}{x} \rightarrow \quad x u=y \\
& u+x \frac{d u}{d x}=\frac{d y}{d x},
\end{aligned}
$$

Plugging these expressions into the ODE gives us

$$
u+x \frac{d u}{d x}=u+\sqrt{u}
$$

Cancelling u, we have here an ODE we can solve with separation of variables.

$$
x \frac{d u}{d x}=\sqrt{u}
$$

Separate variables.

$$
u^{-1 / 2} d u=\frac{d x}{x}
$$

Integrate both sides. Use $\ln C$ for the integration constant.

$$
2 u^{1 / 2}=\ln |x|+\ln C
$$

Combine the logarithms.

$$
2 u^{1 / 2}=\ln C|x|
$$

Because C is arbitrary, we can drop the absolute value sign. Divide both sides by 2 .

$$
u^{1 / 2}=\frac{1}{2} \ln C x
$$

Square both sides to solve for u.

$$
u(x)=\frac{1}{4}(\ln C x)^{2}
$$

Change back now to the original variable y.

$$
\frac{y}{x}=\frac{1}{4}(\ln C x)^{2}
$$

Multiply both sides by x to solve for y. Therefore,

$$
y(x)=\frac{x}{4}(\ln C x)^{2} .
$$

Part (u)

$$
(x y) y^{\prime}+y \ln y=2 x y[\text { try an integrating factor of the form } I=I(y)]
$$

In order for an integrating factor of the form $I=I(y)$ to work, the ODE has to instead be

$$
x y^{\prime}+y \ln y=2 x y .
$$

I confirmed this with one of the authors, Mr. Bender.

Solution by an Integrating Factor

Bring $2 x y$ to the left side and factor y.

$$
x y^{\prime}+y(\ln y-2 x)=0
$$

Multiply both sides by the integrating factor $I(y)$.

$$
x I(y) y^{\prime}+y I(y)(\ln y-2 x)=0
$$

For this ODE to be exact, we require that

$$
\frac{\partial}{\partial y}[y I(y)(\ln y-2 x)]=\frac{\partial}{\partial x}[x I(y)] .
$$

The right side is a function of y only. For the left side to be as well, $y I(y)$ must be equal to a constant. An appropriate integrating factor is thus

$$
I(y)=\frac{1}{y} .
$$

The ODE becomes

$$
\frac{x}{y} y^{\prime}+\ln y-2 x=0
$$

which is exact. This means there exists a potential function $\phi=\phi(x, y)$ such that

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\ln y-2 x \tag{1}\\
& \frac{\partial \phi}{\partial y}=\frac{x}{y} . \tag{2}
\end{align*}
$$

Substituting these into the ODE, we get

$$
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0
$$

The differential of a function $\phi(x, y)$ is defined as

$$
d \phi=\frac{\partial \phi}{\partial x} d x+\frac{\partial \phi}{\partial y} d y .
$$

Dividing both sides by $d x$ gives the relationship between the total derivative of ϕ and the partial derivatives of ϕ.

$$
\frac{d \phi}{d x}=\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}
$$

Hence, the ODE simplifies to

$$
\frac{d \phi}{d x}=0 .
$$

Integrate both sides with respect to x to obtain the general solution.

$$
\phi=A,
$$

where A is an arbitrary constant. Our task now is to determine the potential function ϕ from equations (1) and (2). Integrate equation (1) partially with respect to x.

$$
\begin{aligned}
\phi(x, y) & =\left.\int^{x} \frac{\partial \phi}{\partial x}\right|_{x=s} d s+f(y) \\
& =\int^{x}(\ln y-2 s) d s+f(y) \\
& =x \ln y-x^{2}+f(y)
\end{aligned}
$$

To determine the arbitrary function $f(y)$, differentiate this expression partially with respect to y and compare it with equation (2).

$$
\frac{\partial \phi}{\partial y}=\frac{x}{y}+f^{\prime}(y)
$$

We see that $f^{\prime}(y)$ has to equal zero, which means $f(y)=B$, a constant. The potential function is consequently

$$
\phi(x, y)=x \ln y-x^{2}+B,
$$

which means the general solution to the ODE is

$$
x \ln y-x^{2}+B=A .
$$

Subtract B from both sides and use a new arbitrary constant C.

$$
x \ln y-x^{2}=C .
$$

This equation can be solved for y explicitly. Bring x^{2} to the right side.

$$
x \ln y=C+x^{2}
$$

Divide both sides by x.

$$
\ln y=x+\frac{C}{x}
$$

Exponentiate both sides to solve for y. Therefore,

$$
y(x)=e^{x+C / x}
$$

Solution by a Substitution

$$
x y^{\prime}+y \ln y=2 x y
$$

Divide both sides of the ODE by $x y$.

$$
y^{-1} y^{\prime}+\frac{1}{x} \ln y=2
$$

Make the substitution,

$$
u=\ln y .
$$

Take the derivative of both sides with respect to x to find out what y^{\prime} is in terms of the new variable.

$$
\frac{d u}{d x}=y^{-1} \frac{d y}{d x}
$$

Plug these expressions into the ODE.

$$
\frac{d u}{d x}+\frac{1}{x} u=2
$$

This is a first-order inhomogeneous equation that we can solve with an integrating factor I.

$$
I=e^{\int^{x} \frac{1}{s} d s}=e^{\ln x}=x
$$

Multiply both sides of the ODE by the integrating factor.

$$
x \frac{d u}{d x}+u=2 x
$$

The left side can now be written as $d / d x(I u)$ as a result of the product rule.

$$
\frac{d}{d x}(x u)=2 x
$$

Integrate both sides with respect to x.

$$
x u=x^{2}+C
$$

Divide both sides by x to solve for u.

$$
u(x)=x+\frac{C}{x}
$$

Now that we have u, change back to the original variable y.

$$
\ln y=x+\frac{C}{x}
$$

Exponentiate both sides to solve for y. Therefore,

$$
y(x)=e^{x+C / x} .
$$

Part (v)

$$
\left(x \sin y+e^{y}\right) y^{\prime}=\cos y
$$

Bring $\cos y$ to the left side.

$$
-\cos y+\left(x \sin y+e^{y}\right) y^{\prime}=0
$$

This ODE has the form,

$$
M(x, y)+N(x, y) \frac{d y}{d x}=0 .
$$

Check to see whether $M_{y}=N_{x}$. If it's not, we'll have to use an integrating factor.

$$
\begin{aligned}
& \frac{\partial M}{\partial y}=\sin y \\
& \frac{\partial N}{\partial x}=\sin y
\end{aligned}
$$

The two partial derivatives are equal, which means the ODE is exact. This implies that there exists a potential function $\phi(x, y)$ such that

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M(x, y) \tag{1}\\
& \frac{\partial \phi}{\partial y}=N(x, y) \tag{2}
\end{align*}
$$

Substituting these relations into the ODE gives

$$
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 .
$$

Recall that the differential of a function of two variabes, $\phi=\phi(x, y)$, is this.

$$
d \phi=\frac{\partial \phi}{\partial x} d x+\frac{\partial \phi}{\partial y} d y
$$

Dividing both sides by $d x$ gives us the relationship between the total derivative of ϕ and the partial derivatives of it.

$$
\frac{d \phi}{d x}=\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}
$$

Substitution into the ODE reduces it to

$$
\frac{d \phi}{d x}=0 .
$$

Integrating both sides with respect to x gives the general solution.

$$
\phi=A,
$$

where A is an arbitrary constant. Our task now is to find this potential function $\phi(x, y)$ using equations (1) and (2).

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=-\cos y \tag{1}\\
& \frac{\partial \phi}{\partial y}=x \sin y+e^{y} \tag{2}
\end{align*}
$$

We will solve for ϕ by integrating both sides of equation (1) partially with respect to x. Note that we would get the same answer for ϕ integrating both sides of equation (2) partially with respect to y.

$$
\begin{aligned}
\phi(x, y) & =\left.\int^{x} \frac{\partial \phi}{\partial x}\right|_{x=s} d s+f(y) \\
& =\int^{x}-\cos y d s+f(y) \\
& =-x \cos y+f(y)
\end{aligned}
$$

Differentiate this expression we just obtained with respect to y.

$$
\frac{\partial \phi}{\partial y}=x \sin y+f^{\prime}(y)
$$

Comparing this result with equation (2), we see that $f^{\prime}(y)$ has to be equal to e^{y} in order to be consistent, which means $f(y)=e^{y}+C$. We thus have

$$
-x \cos y+e^{y}+C=A
$$

for the general solution to the ODE. Bring C to the left and use a new arbitrary constant B. Therefore,

$$
-x \cos y+e^{y}=B
$$

is the general (albeit implicit) solution for $y(x)$.

Part (w)

$$
\left(x+y^{2} x\right) y^{\prime}+x^{2} y^{3}=0[y(1)=1]
$$

This ODE can be solved by separation of variables.

$$
x\left(1+y^{2}\right) \frac{d y}{d x}+x^{2} y^{3}=0
$$

Bring $x^{2} y^{3}$ over to the right.

$$
x\left(1+y^{2}\right) \frac{d y}{d x}=-x^{2} y^{3}
$$

Separate variables.

$$
\frac{1+y^{2}}{y^{3}} d y=-x d x
$$

Integrate both sides.

$$
\int^{y}\left(s^{-3}+\frac{1}{s}\right) d s=-\frac{1}{2} x^{2}+C
$$

Evaluate the integral on the left.

$$
\frac{1}{-2} y^{-2}+\ln |y|=-\frac{1}{2} x^{2}+C
$$

Use the given boundary condition, $y(1)=1$, to determine C.

$$
-\frac{1}{2}=-\frac{1}{2}+C \quad \rightarrow \quad C=0
$$

So we have

$$
\frac{1}{2}\left(x^{2}-\frac{1}{y^{2}}\right)+\ln |y|=0 .
$$

In order to obtain a single positive value of y when $x=1$, we restrict the solution to positive values of y by dropping the absolute value sign.

$$
\frac{1}{2}\left(x^{2}-\frac{1}{y^{2}}\right)+\ln y=0
$$

Do note, though, that because we divided by x when we separated variables, the solution for y is not defined when $x=0$. Therefore,

$$
\frac{1}{2}\left(x^{2}-\frac{1}{y^{2}}\right)+\ln y=0, \quad x \neq 0
$$

Part (x)

$$
(x-1)(x-2) y^{\prime}+y=2[y(0)=1]
$$

Divide both sides $(x-1)(x-2)$ to isolate the y^{\prime} term.

$$
y^{\prime}+\frac{1}{(x-1)(x-2)} y=\frac{2}{(x-1)(x-2)}
$$

This is a first-order ODE that can be solved with an integrating factor I.

$$
I=e^{\int^{x} \frac{1}{(s-1)(s-2)} d s}
$$

To evaluate the integral, use partial fraction decomposition.

$$
\frac{1}{(s-1)(s-2)}=\frac{A}{s-1}+\frac{B}{s-2}
$$

Our task here is to determine A and B. Multiply both sides by the least common denominator.

$$
1=A(s-2)+B(s-1)
$$

Choose two random values of s to get two equations that we can use to solve for A and B.

$$
\begin{array}{ll}
s=2: & 1=B(1) \\
s=1: & 1=A(-1)
\end{array}
$$

The system yields $A=-1$ and $B=1$, so the integral we have to evaluate in the exponent becomes

$$
\int^{x}\left(-\frac{1}{s-1}+\frac{1}{s-2}\right) d s=-\ln (x-1)+\ln (x-2)=\ln \frac{x-2}{x-1} .
$$

Hence,

$$
I=e^{\ln \frac{x-2}{x-1}}=\frac{x-2}{x-1} .
$$

Multiply both sides of the ODE by this integrating factor.

$$
\frac{x-2}{x-1} y^{\prime}+\frac{1}{(x-1)^{2}} y=\frac{2}{(x-1)^{2}}
$$

The left side is now exact and can written as $d / d x(I y)$ as a result of the product rule.

$$
\frac{d}{d x}\left(\frac{x-2}{x-1} y\right)=\frac{2}{(x-1)^{2}}
$$

Integrate both sides of the equation with respect to x.

$$
\frac{x-2}{x-1} y=-\frac{2}{x-1}+C
$$

Multiply both sides by $x-1$ and divide both sides by $x-2$ to solve for y.

$$
y(x)=-\frac{2}{x-2}+\frac{C(x-1)}{x-2}
$$

Combine the two terms into one.

$$
y(x)=\frac{C(x-1)-2}{x-2}
$$

Use the provided initial condition, $y(0)=1$, to determine C.

$$
1=\frac{C(-1)-2}{-2} \quad \rightarrow \quad C=0
$$

Therefore,

$$
y(x)=\frac{2}{2-x} .
$$

Figure 6: Plot of the solution for $-3<x<5$.

Part (y)

$$
y^{\prime}=1 /\left(x+e^{y}\right)
$$

This ODE for $y(x)$ is quite difficult, so invert both sides of the equation.

$$
\frac{d y}{d x}=\frac{1}{x+e^{y}} \quad \rightarrow \quad \frac{d x}{d y}=x+e^{y}
$$

Bring x over to the left side.

$$
\frac{d x}{d y}-x=e^{y}
$$

This is a simpler first-order inhomogeneous ODE for x that can be solved with an integrating factor $I . x$ is now the dependent variable, and y is now the independent variable.

$$
I=e^{\int^{y}-1 d s}=e^{-y}
$$

Multiply both sides of the equation by I.

$$
e^{-y} \frac{d x}{d y}-e^{-y} x=1
$$

The left side is now exact and can be written as $d / d y(I x)$.

$$
\frac{d}{d y}\left(e^{-y} x\right)=1
$$

Integrate both sides with respect to y.

$$
e^{-y} x=y+C
$$

Multiply both sides by e^{y} to solve for x.

$$
x(y)=e^{y}(y+C)
$$

This is an implicit solution for y.

Part (z)

$$
x y^{\prime}+y=y^{2} x^{4}
$$

This is a Bernoulli equation. Start off by getting rid of the term multiplying y^{\prime}. Divide both sides of the equation by x.

$$
y^{\prime}+\frac{1}{x} y=y^{2} x^{3}
$$

Now divide both sides by y^{2}.

$$
y^{-2} y^{\prime}+\frac{1}{x} y^{-1}=x^{3}
$$

Make the substitution,

$$
\begin{aligned}
u & =y^{-1} \\
\frac{d u}{d x} & =(-1) y^{-2} \frac{d y}{d x} \quad \rightarrow \quad-\frac{d u}{d x}=y^{-2} \frac{d y}{d x} .
\end{aligned}
$$

Plug these expressions into the ODE.

$$
-\frac{d u}{d x}+\frac{1}{x} u=x^{3}
$$

This is a first-order ODE that can be solved with an integrating factor. Multiply both sides by -1 .

$$
\frac{d u}{d x}-\frac{1}{x} u=-x^{3}
$$

The integrating factor is this.

$$
I=e^{\int^{x}-\frac{1}{s} d s}=e^{-\ln x}=x^{-1}
$$

Multiply both sides by I.

$$
\frac{1}{x} \frac{d u}{d x}-\frac{1}{x^{2}} u=-x^{2}
$$

The left side is now exact and can be written as $d / d x(I u)$ as a result of the product rule.

$$
\frac{d}{d x}\left(\frac{1}{x} u\right)=-x^{2}
$$

Integrate both sides with respect to x.

$$
\frac{1}{x} u=-\frac{1}{3} x^{3}+C
$$

Multiply both sides to solve for u.

$$
u(x)=-\frac{1}{3} x^{4}+C x
$$

Change back now to the original variable y.

$$
\frac{1}{y}=-\frac{1}{3} x^{4}+C x
$$

Invert both sides to solve for y and then simplify the result.

$$
y(x)=\frac{1}{-\frac{1}{3} x^{4}+C x}=\frac{3}{x\left(3 C-x^{3}\right)}=\frac{3}{x\left(A-x^{3}\right)}
$$

