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Problem 1.31

Solve the following differential equations:

(a) y′ = y/x+ 1/y;

(b) y′ = xy/(x2 + y2);

(c) y′ = x2 + 2xy + y2;

(d) yy′′ = 2(y′)2;

(e) y′ = (1 + x)y2/x2;

(f) x2y′ + xy + y2 = 0;

(g) xy′ = y(1− lnx+ ln y);

(h) (x+ y2) + 2(y2 + y + x− 1)y′ = 0, using an integrating factor of the form I(x, y) = eax+by;

(i) −xy′ + y = xy2 [y(1) = 1];

(j) y′′ − (1 + x)−2(y′)2 = 0 [y(0) = y′(0) = 1];

(k) 2xyy′ + y2 − x2 = 0;

(l) y′′ = (y′)2e−y (if y′ = 1 at y = ∞, find y′ at y = 0);

(m) y′ = |y − x| [if y(0) = 1
2 , find y(1)];

(n) xy′ = y + xey/x;

(o) y′ = (x4 − 3x2y2 − y3)/(2x3y + 3y2x);

(p) (x2 + y2)y′ = xy, y(e) = e;

(q) y′′ + 2y′y = 0 [y(0) = y′(0) = −1];

(r) x2y′′ + xy′ − y = 3x2 [y(1) = y(2) = 1];

(s) y3(y′)2y′′ = −1
2 [y(0) = y′(0) = 1]

(t) xy′ = y +
√
xy;

(u) (xy)y′ + y ln y = 2xy [try an integrating factor of the form I = I(y)]; [TYPO: The first term
should be xy′]

(v) (x sin y + ey)y′ = cos y;

(w) (x+ y2x)y′ + x2y3 = 0 [y(1) = 1];

(x) (x− 1)(x− 2)y′ + y = 2 [y(0) = 1];

(y) y′ = 1/(x+ ey);

(z) xy′ + y = y2x4.
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Solution

Part (a)

y′ = y/x+ 1/y

Multiply both sides of the ODE by y.

yy′ =
y2

x
+ 1

Rewrite the left side as follows.
d

dx

(
1

2
y2
)

=
y2

x
+ 1

Bring the constant out of the derivative and move the y2 term to the left.

1

2

d

dx

(
y2
)
− y2

x
= 1

Multiply both sides by 2 to get rid of the 1/2 factor.

d

dx
(y2)− 2

x
y2 = 2

This is a first-order inhomogeneous ODE for y2 that can be solved with an integrating factor I.

I = e
� x − 2

s
ds = e−2 lnx = elnx−2

= x−2

Multiply both sides of the equation by the integrating factor.

1

x2
d

dx
(y2)− 2

x3
y2 =

2

x2

The left side is now exact and can be written as d/dx(Iy2) as a result of the product rule.

d

dx

(
1

x2
y2
)

=
2

x2

Integrate both sides with respect to x.

1

x2
y2 = −2

x
+ C,

where C is an arbitrary constant. Multiply both sides by x2.

y2 = −2x+ Cx2

Therefore,

y(x) = ±
√

−2x+ Cx2.
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Part (b)

y′ = xy/(x2 + y2)

Multiply the numerator and denominator on the right side by 1/x2.

y′ =
xy

x2 + y2
·

1
x2

1
x2

=
y
x

1 + y2

x2

=
y
x

1 +
( y
x

)2
The right-hand side suggests the substitution,

u =
y

x
→ xu = y

u+ x
du

dx
=

dy

dx
.

The ODE is transformed to

u+ x
du

dx
=

u

1 + u2
.

Bring u to the right side.

x
du

dx
= − u3

1 + u2

This ODE can be solved by separation of variables.

1 + u2

u3
du = −dx

x

Integrate both sides. �
(u−3 + u−1) du = − ln |x|+ C

1

−2
u−2 + ln |u| = − ln |x|+ C

Bring ln |x| to the left and combine it with ln |u|.

−1

2

1

u2
+ ln |xu| = C

Now that the integration is done, change back to the original variable y.

−1

2

x2

y2
+ ln |y| = C

Multiply both sides by −2 and change the arbitrary constant. Therefore, the solution is expressed
implicitly as

x2

y2
− ln y2 = A.
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Part (c)

y′ = x2 + 2xy + y2

The right side is a perfect square.
y′ = (x+ y)2

It suggests the substitution,

u = x+ y → u− x = y

du

dx
− 1 =

dy

dx

Plugging these into the ODE gives us
du

dx
− 1 = u2.

This equation can be solved by separation of variables.

du

dx
= u2 + 1

du

u2 + 1
= dx

Integrate both sides.
arctanu = x+ C

Take the tangent of both sides.
u(x) = tan(x+ C)

Now change back to the original variable y.

x+ y = tan(x+ C)

Therefore,
y(x) = tan(x+ C)− x.
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Part (d)

yy′′ = 2(y′)2

Subtract (y′)2 from both sides.
yy′′ − (y′)2 = (y′)2

Divide both sides by (y′)2.
yy′′ − (y′)2

(y′)2
= 1

Recognize that the left side is the derivative of a quotient.

d

dx

(
− y

y′

)
= 1

Integrate both sides with respect to x.

− y

y′
= x+ C1

Multiply both sides by −1.
y

y′
= −(x+ C1)

Invert both sides.
y′

y
= − 1

x+ C1

This ODE can be solved with separation of variables.

dy

y
= − dx

x+ C1

Integrate both sides.
ln |y| = − ln |x+ C1|+ C2

Exponentiate both sides.
eln |y| = eln |x+C1|−1+C2

|y| = eC2

|x+ C1|
Remove the absolute value sign on the left by introducing ± on the right side.

y(x) =
±eC2

|x+ C1|

Use new arbitrary constants on the right side, A and B, and drop the absolute value sign—we can
do this because A is arbitrary. Therefore,

y(x) =
A

x+B
.

www.stemjock.com



Bender & Orszag Mathematical Methods: Chapter 1 - Problem 1.31 Page 6 of 41

Part (e)

y′ = (1 + x)y2/x2

This ODE can be solved by separation of variables.

dy

dx
=

1 + x

x2
y2

Split up the fraction on the right side with x.

dy

y2
=

(
1

x2
+

1

x

)
dx

Integrate both sides.

−1

y
= −1

x
+ ln |x|+ C

Combine the terms on the right side.

−1

y
=

−1 + x ln |x|+ Cx

x

Invert both sides and multiply both sides by −1.

y =
x

1− x ln |x| − Cx

Introduce a new arbitrary constant A to eliminate the minus sign. Therefore,

y(x) =
x

1− x ln |x|+Ax
.
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Part (f)

x2y′ + xy + y2 = 0

This is a Bernoulli equation, so we start by dividing both sides by y2.

x2y−2y′ + xy−1 + 1 = 0

Now make the substitution,

u = y−1

du

dx
= −y−2 dy

dx
→ −du

dx
= y−2 dy

dx

Plug these into the ODE.

x2
(
−du

dx

)
+ xu+ 1 = 0

Divide both sides by −x2.
du

dx
− 1

x
u− 1

x2
= 0

Bring 1/x2 to the right side.
du

dx
− 1

x
u =

1

x2

This is a first-order inhomogeneous ODE that can be solved by multiplying both sides by an
integrating factor.

I = e
� x − 1

s
ds = e− lnx = x−1

Proceed with the multiplication of both sides by I.

1

x

du

dx
− 1

x2
u =

1

x3

The left side is now exact and can be written as d/dx(Iu) as a result of the product rule.

d

dx

(
1

x
u

)
=

1

x3

Integrate both sides with respect to x.

1

x
u = − 1

2x2
+ C

Multiply both sides by x to solve for u.

u(x) = − 1

2x
+ Cx

Now that the integration is done, change back to the original variable y.

1

y
= − 1

2x
+ Cx

Combine the terms on the right side and use a new constant A for 2C.

1

y
=

−1 + 2Cx2

2x
→ y(x) =

2x

Ax2 − 1
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Part (g)

xy′ = y(1− lnx+ ln y)

Divide both sides by x and combine the logarithms on the right side.

y′ =
y

x

(
1− ln

y

x

)
The right side suggests the subsitution,

u =
y

x
→ xu = y

u+ x
du

dx
=

dy

dx
.

Plug these expressions into the ODE.

u+ x
du

dx
= u(1− ln u)

Subtract u from both sides.

x
du

dx
= −u ln u

This ODE can be solved by separation of variables.

du

u ln u
= −dx

x

Integrate both sides. �
du

u ln u
= − ln |x|+ C

Use the following substitution to evaluate the integral on the left.

v = ln u

dv =
du

u

The integral becomes �
dv

v
= − ln |x|+ C.

So we have
ln |v| = − ln |x|+ C.

Exponentiate both sides.
|v| = |x|−1eC

Introduce ± on the right side to eliminate the absolute value sign on the left.

v =
±eC

|x|

Use a new arbitrary constant A.

v =
A

|x|
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It’s because A is arbitrary that we can drop the absolute value sign in the denominator. Change
back to the variable u.

ln u =
A

x

Exponentiate both sides.
u = eA/x

Now change back to the original variable y.

y

x
= eA/x

Multiply both sides by x to solve for y. Therefore,

y(x) = xeA/x.
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Part (h)

(x+ y2) + 2(y2 + y + x− 1)y′ = 0, using an integrating factor of the form I(x, y) = eax+by

This differential equation is of the form,

M(x, y) +N(x, y)
dy

dx
= 0.

Multiplying both sides by an integrating factor I(x, y) gives

I(x, y)M(x, y) + I(x, y)N(x, y)
dy

dx
= 0. (1)

Our aim is to determine the constants, a and b, in the provided function so that

∂

∂y
I(x, y)M(x, y) =

∂

∂x
I(x, y)N(x, y).

This is the condition that has to hold in order for the ODE to be exact. Using the product rule,
we have for the left side

∂

∂y
I(x, y)M(x, y) =

∂

∂y
(x+ y2)eax+by

= 2yeax+by + (x+ y2)beax+by

= [2y + b(x+ y2)]eax+by.

Using the product rule, we have for the right side

∂

∂x
I(x, y)N(x, y) =

∂

∂x
2(y2 + y + x− 1)eax+by

= 2eax+by + 2(y2 + y + x− 1)aeax+by

= 2[1 + a(y2 + y + x− 1)]eax+by.

In order for these partial derivatives to be equal, we require that

2y + b(x+ y2) = 2[1 + a(y2 + y + x− 1)].

Expand both sides of the equation.

2y + bx+ by2 = 2 + 2ay2 + 2ay + 2ax− 2a

This equation can only be true if we set a = 1 and b = 2. Thus, our integrating factor is
I(x, y) = ex+2y. The ODE we started with becomes exact as a result of multiplying both sides by
this integrating factor. The fact that it is exact means there exists a potential function ϕ(x, y)
such that

∂ϕ

∂x
= I(x, y)M(x, y)

∂ϕ

∂y
= I(x, y)N(x, y).
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The ODE in equation (1) can hence be written as

∂ϕ

∂x
+

∂ϕ

∂y

dy

dx
= 0. (2)

Recall that for a function of two variables ϕ(x, y), its differential is defined as

dϕ =
∂ϕ

∂x
dx+

∂ϕ

∂y
dy.

Dividing both sides by dx yields the relationship between the total derivative of a function and its
partial derivatives.

dϕ

dx
=

∂ϕ

∂x
+

∂ϕ

∂y

dy

dx

So equation (2) reduces to
dϕ

dx
= 0.

Integrating both sides with respect to x gives

ϕ(x, y) = A,

where A is an arbitrary constant. Our goal now is to find this potential function.

∂ϕ

∂x
= (x+ y2)ex+2y (3)

∂ϕ

∂y
= 2(y2 + y + x− 1)ex+2y (4)

Since equation (3) looks simpler, integrate both sides of it partially with respect to x to solve for
ϕ. Note that we would arrive at the same answer if we integrated both sides of equation (4)
partially with respect to y.

ϕ(x, y) =

� x ∂ϕ

∂x

∣∣∣∣
x=s

ds+ f(y)

=

� x

(s+ y2)es+2y ds+ f(y)

=

� x

(sese2y + y2ese2y) ds+ f(y)

= e2y
� x

ses ds+ y2e2y
� x

es ds+ f(y)

= e2y(x− 1)ex + y2e2yex + f(y)

= (x− 1 + y2)ex+2y + f(y),

where f(y) is an arbitrary function. To determine it, differentiate ϕ(x, y) with respect to y.

∂ϕ

∂y
= 2(y2 + y + x− 1)ex+2y + f ′(y)

In order for this equation to be consistent with equation (4), we require that f ′(y) = 0, which
means f(y) = B, a constant. Consequently,

ϕ(x, y) = (x− 1 + y2)ex+2y +B.
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So for the general solution to the ODE, we have

(x− 1 + y2)ex+2y +B = A.

Subtract B from both sides and introduce a new arbitrary constant C. Therefore,

(x− 1 + y2)ex+2y = C.
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Part (i)

−xy′ + y = xy2 [y(1) = 1]

This is a Bernoulli equation. First get it into standard form by dividing both sides by −x.

y′ − 1

x
y = −y2

Divide both sides now by y2.

y−2y′ − 1

x
y−1 = −1

Make the substitution,

u = y−1

du

dx
= −y−2 dy

dx
→ −du

dx
= y−2 dy

dx

Plug these expressions into the ODE.

−du

dx
− 1

x
u = −1

Multiply both sides by −1.
du

dx
+

1

x
u = 1

This is a first-order inhomogeneous equation that can be solved by multiplying both sides by an
integrating factor I.

I = e
� x 1

s
ds = elnx = x

Proceed with the multiplication.

x
du

dx
+ u = x

The left side is now exact and can be written as d/dx(Iu) as a result of the product rule.

d

dx
(xu) = x

Integrate both sides of the equations with respect to x.

xu =
1

2
x2 + C

Divide both sides by x to solve for u.

u(x) =
1

2
x+

C

x

Now that the integration is done, change back to the original variable y.

1

y
=

1

2
x+

C

x

Write the right side as one term by combining the fractions.

1

y
=

x2 + 2C

2x
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Invert both sides to solve for y.

y(x) =
2x

x2 + 2C

Now that we have the general solution we can apply the initial condition to determine the
constant in the denominator.

y(1) =
2

1 + 2C
= 1

Solving this equation yields C = 1/2. Therefore,

y(x) =
2x

x2 + 1
.

Figure 1: Plot of the solution for −10 < x < 10.
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Part (j)

y′′ − (1 + x)−2(y′)2 = 0 [y(0) = y′(0) = 1]

This ODE is first-order in y′, so make the substitution,

u = y′

u′ = y′′.

Plugging these expressions into the ODE yields

u′ − 1

(1 + x)2
u2 = 0,

which can be solved by separation of variables. Bring the second term over to the right.

du

dx
=

1

(1 + x)2
u2

Separate variables.
du

u2
=

dx

(1 + x)2

Integrate both sides.

−1

u
= − 1

1 + x
+ C

Multiply both sides by −1 and combine the two terms on the right into one.

1

u
=

1− C(1 + x)

1 + x

Invert both sides now to solve for u.

u(x) =
1 + x

1− C(1 + x)

Now that the integration is done, change back to the original variable y.

y′ =
1 + x

1− C(1 + x)

At this point we can apply the first initial condition, y′(0) = 1, to determine C.

y′(0) =
1

1− C
= 1

Solving for C gives C = 0. So we have
y′ = 1 + x.

Integrate both sides with respect to x to solve for y.

y(x) = x+
1

2
x2 +D

Use the second initial condition, y(0) = 1, to determine D.

y(0) = D = 1

Therefore,

y(x) = x+
1

2
x2 + 1.
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Part (k)

2xyy′ + y2 − x2 = 0

Rewrite the term with the derivative as follows.

x
d

dx
(y2) + y2 − x2 = 0

Bring the x2 term to the right.

x
d

dx
(y2) + y2 = x2

Notice that the left side is exact and can be written as d/dx(xy2) as a result of the product rule.

d

dx
(xy2) = x2

Integrate both sides with respect to x.

xy2 =
1

3
x3 + C

Divide both sides by x.

y2 =
1

3
x2 +

C

x

Therefore,

y(x) = ±
√

1

3
x2 +

C

x
.
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Part (l)

y′′ = (y′)2e−y (if y′ = 1 at y = ∞, find y′ at y = 0)

Divide both sides by y′.
y′′

y′
= y′e−y

Rewrite the left side as follows.
d

dx
ln y′ = y′e−y

Rewrite the right side as follows.
d

dx
ln y′ =

d

dx
(−e−y)

Integrate both sides with respect to x.

ln y′ = −e−y + C.

Exponentiate both sides.
y′ = eCe−e−y

Use a new arbitrary constant A.
y′ = Ae−e−y

(1)

Now that we solved for y′ in terms of y, we can use the provided boundary condition to determine
A. As y → ∞, e−y → 0, so we have

lim
y→∞

y′ = Ae0 = A = 1.

Now that we know A, we can find y′ when y = 0.

lim
y→0

y′ = e−e0

Therefore, y′ at y = 0 is equal to e−1. The general solution for y can be obtained by separation of
variables in equation (1).

ee
−y

dy = Adx

Integrate both sides. � y

ee
−s

ds = Ax+B

The solution is only implicit for y.
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Part (m)

y′ = |y − x| [if y(0) = 1

2
, find y(1)]

The right side prompts the substitution,

u = y − x

du

dx
=

dy

dx
− 1 → du

dx
+ 1 =

dy

dx
.

Plug these expressions into the ODE.
du

dx
+ 1 = |u|

Bring 1 to the right side.
du

dx
= |u| − 1

The absolute value is defined as {
u u > 0

−u u < 0,

so there are two cases to consider here.

Case I: u > 0

Here we consider the first case.
du

dx
= u− 1

This equation can be solved with separation of variables.

du

u− 1
= dx

Integrate both sides.
ln |u− 1| = x+ C

Exponentiate both sides.
|u− 1| = exeC

Eliminate the absolute value sign by introducing ± on the right side.

u− 1 = ±eCex

Use a new arbitrary constant.
u− 1 = Aex

Bring 1 to the right side to solve for u.

u(x) = 1 +Aex, u > 0

Change back now to the original variable y.

y − x = 1 +Aex
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Thus, for the first case we have

y(x) = x+ 1 +Aex, y − x > 0.

Case II: u < 0

Here we consider the second case.
du

dx
= −u− 1

This equation can be solved with separation of variables.

du

u+ 1
= −dx

Integrate both sides.
ln |u+ 1| = −x+ C

Exponentiate both sides.
|u+ 1| = e−xeC

Eliminate the absolute value sign by introducing ± on the right side.

u+ 1 = ±eCe−x

Use a new arbitrary constant.
u+ 1 = Be−x

Bring 1 to the right side to solve for u.

u(x) = −1 +Be−x, u < 0

Change back now to the original variable y.

y − x = −1 +Be−x

Thus, for the second case we have

y(x) = x− 1 +Be−x, y − x < 0.

Putting the results of these two cases together, we have for the general solution

y(x) =

{
x+ 1 +Aex y − x > 0

x− 1 +Be−x y − x < 0
.

To determine one of the constants, we use the provided initial condition, y(0) = 1
2 . Since y is

bigger than x, we apply it to the first case.

y(0) = 1 +A =
1

2
→ A = −1

2

The solution is now

y(x) =

{
x+ 1− 1

2e
x y − x > 0

x− 1 +Be−x y − x < 0
.
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To determine the second unknown constant, we require that the solution be continuous
everywhere, that is, when y − x = 0, the two expressions for y(x) must yield the same result.
Bring x to the left side.

y − x =

 1− 1

2
ex = 0

−1 +Be−x = 0

We have here a system of two equations for two unknowns, x and B. Solving the system gives us
x = ln 2 and B = 2. Therefore, the solution to the ODE is

y(x) =

{
x+ 1− 1

2e
x y − x > 0

x− 1 + 2e−x y − x < 0
.

Although we have determined the constants, this equation is only implicit for y(x). Our aim now
is to write an explicit expression for y, that is, one that depends only on x. The interpretation of
this solution is as follows: above the line y = x, we use the first expression for y(x) and below the
same line, we use the second expression for y(x). What we have to do is graph the functions and
find out for what values of x this occurs.

Figure 2: This is a plot of three functions for −4 < x < 4. The first expression for y(x) is in red,
the second expression for y(x) is in blue, and the line, y = x, is in green.
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As can be seen from the graph, the red line is above the green line to the left of the point of
intersection, x = ln 2. Also, the blue line is below the green line to the right of x = ln 2.
Therefore, the explicit solution for y(x) is this.

y(x) =

{
x+ 1− 1

2e
x x < ln 2

x− 1 + 2e−x x ≥ ln 2

Figure 3: Plot of the solution for −4 < x < 4.

Finally, we are in a position to answer the question. Since ln 2 ≈ 0.69, we use the second
expression to determine y(1).

y(1) = 2e−1 ≈ 0.73
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Part (n)

xy′ = y + xey/x

Divide both sides of the equation by x.

y′ =
y

x
+ ey/x

The right side prompts the substitution,

u =
y

x
→ xu = y

u+ x
du

dx
=

dy

dx
.

Plugging these expressions into the ODE, we have

u+ x
du

dx
= u+ eu.

Cancel u from both sides.

x
du

dx
= eu

This equation can be solved by separation of variables.

e−u du =
dx

x

Integrate both sides.
−e−u = ln |x|+ C

Multiply both sides by −1.
e−u = − ln |x| − C

Take the logarithm of both sides.
−u = ln(− ln |x| − C)

Use a new arbitrary constant ln B, remove the minus sign in front of the logarithm by inverting
its argument, and multiply both sides by −1 to solve for u.

u(x) = − ln

(
ln

1

|x|
+ ln B

)
Now that the integration is done, change back to the original variable y. Combine the logarithms
and remove the minus sign in front of the logarithm by inverting its argument.

y

x
= ln

1

ln B
|x|

The point of using ln B for the new arbitrary constant is so that B is on top of the absolute value
sign here. This allows us to drop the absolute value sign because it doesn’t matter whether x is
positive or negative. Multiply both sides by x to solve for y. Therefore,

y(x) = x ln
1

ln B
x

.
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Part (o)

y′ = (x4 − 3x2y2 − y3)/(2x3y + 3y2x)

Bring all terms over to the left side.

y3 + 3x2y2 − x4 + (2x3y + 3y2x)
dy

dx
= 0

This ODE is of the form,

M(x, y) +N(x, y)
dy

dx
= 0.

Check to see whether My = Nx or not. It it’s not, then we’ll have to multiply both sides by an
integrating factor.

∂M

∂y
= 3y2 + 6x2y

∂N

∂x
= 6x2y + 3y2

My = Nx, so the ODE is exact. This implies that there exists a potential function ϕ(x, y) such
that

∂ϕ

∂x
= M(x, y) (1)

∂ϕ

∂y
= N(x, y). (2)

The ODE thus becomes
∂ϕ

∂x
+

∂ϕ

∂y

dy

dx
= 0.

Recall that the differential of a function of two variables ϕ(x, y) is

dϕ =
∂ϕ

∂x
dx+

∂ϕ

∂y
dy.

Divide both sides by dx to obtain the relationship between the total derivative of ϕ(x, y) and the
partial derivatives of ϕ(x, y).

dϕ

dx
=

∂ϕ

∂x
+

∂ϕ

∂y

dy

dx

Consequently, the ODE becomes
dϕ

dx
= 0.

Integrate both sides with respect to x to obtain the solution to the ODE.

ϕ(x, y) = A,

where A is an arbitrary constant. Our aim now is to determine ϕ(x, y) using equations (1) and (2).

∂ϕ

∂x
= y3 + 3x2y2 − x4 (1)

∂ϕ

∂y
= 2x3y + 3y2x (2)
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Integrate the second equation partially with respect to y to solve for ϕ. Note that we could
integrate the first equation partially with respect to x to solve for ϕ as well. We would get the
same answer either way.

ϕ(x, y) =

� y ∂ϕ

∂y

∣∣∣∣
y=s

ds+ f(x)

=

� y

(2x3s+ 3s2x) ds+ f(x)

=

� y

2x3s ds+

� y

3s2x ds+ f(x)

= 2x3
� y

s ds+ 3x

� y

s2 ds+ f(x)

= x3y2 + xy3 + f(x)

In order to determine the arbitrary function f(x), we have to use equation (1). Differentiate the
expression we just obtained with respect to x.

∂ϕ

∂x
= 3x2y2 + y3 + f ′(x)

Comparing this with equation (1), we see that f ′(x) has to be equal to −x4 in order to be
consistent. Hence, f(x) = −x5/5. Therefore, the general solution to the ODE is

x3y2 + xy3 − x5

5
= A.
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Part (p)

(x2 + y2)y′ = xy, y(e) = e

Divide both sides by x2 + y2 to solve for y′.

y′ =
xy

x2 + y2

Multiply the numerator and denominator on the right side by 1/x2.

y′ =
xy

x2 + y2
·

1
x2

1
x2

=
y
x

1 + y2

x2

=
y
x

1 +
( y
x

)2
The right-hand side suggests the substitution,

u =
y

x
→ xu = y

u+ x
du

dx
=

dy

dx
.

The ODE is transformed to

u+ x
du

dx
=

u

1 + u2
.

Bring u to the right side.

x
du

dx
= − u3

1 + u2

This ODE can be solved by separation of variables.

1 + u2

u3
du = −dx

x

Integrate both sides. �
(u−3 + u−1) du = − ln |x|+ C

1

−2
u−2 + ln |u| = − ln |x|+ C

Bring ln |x| to the left and combine it with ln |u|.

−1

2

1

u2
+ ln |xu| = C

Now that the integration is done, change back to the original variable y.

−1

2

x2

y2
+ ln |y| = C

Multiply both sides by −2.
x2

y2
− 2 ln y = −2C

We can determine −2C by using the provided boundary condition, y(e) = e.

1− 2 ln e = −2C → −2C = −1

Therefore,
x2

y2
− 2 ln y = −1.
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Part (q)

y′′ + 2y′y = 0 [y(0) = y′(0) = −1]

The left side of the ODE can be written as follows.

d

dx

(
dy

dx

)
+

d

dx
(y2) = 0

Integrate both sides with respect to x.

dy

dx
+ y2 = A

We can determine A by using the provided initial conditions. When x = 0, y and dy/dx are equal
to −1.

−1 + (−1)2 = A → A = 0,

so the ODE simplifies to
dy

dx
+ y2 = 0.

Move y2 over to the right side.
dy

dx
= −y2

This ODE can be solved by separation of variables.

y−2 dy = −dx

Integrate both sides.

−1

y
= −x+B

Plug in the initial conditions once again to determine B.

1 = B

So we have

−1

y
= −x+ 1

Multiply both sides by −1.
1

y
= x− 1

Invert both sides to solve for y. Therefore,

y(x) =
1

x− 1
.
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Part (r)

x2y′′ + xy′ − y = 3x2 [y(1) = y(2) = 1]

This is an inhomogeneous ODE, so the general solution is the sum of the complementary solution
yc and the particular solution yp.

y(x) = yc + yp

We’ll start by finding yc, which is the solution to the associated homogeneous equation.

x2y′′c + xy′c − yc = 0

This ODE is equidimensional since the change in scale x → ax leaves the equation unchanged.
Thus, the solution is of the form yc = xr. Our task now is to plug this expression into the ODE to
determine the values of r for which it holds.

yc = xr → y′c = rxr−1 → y′′c = r(r − 1)xr−2

Substituting these expressions into the ODE yields

r(r − 1)xr + rxr − xr = 0.

Divide both sides by xr to obtain the indicial equation.

r(r − 1) + r − 1 = 0

r cancels out.
r2 − 1 = 0

Factor the left side.
(r − 1)(r + 1) = 0

Thus, r = 1 or r = −1. We can now write the solution for the associated homogeneous equation.

yc(x) = C1x
1 + C2x

−1

Our next goal is to determine the particular solution yp. To do this, we will use the method of
variation of parameters. That is, we will assume yp has the form

yp = u1(x)x+ u2(x)x
−1,

where u1 and u2 satisfy

xu′1 + x−1u′2 = 0

u′1 + (−1)x−2u′2 =
3x2

x2
= 3.

Solve this system of equations for u′1 and u′2 using Cramer’s rule.

u′1 =

∣∣∣∣0 x−1

3 −x−2

∣∣∣∣∣∣∣∣x x−1

1 −x−2

∣∣∣∣ =
− 3

x

− 2
x

=
3

2

u′2 =

∣∣∣∣x 0
1 3

∣∣∣∣∣∣∣∣x x−1

1 −x−2

∣∣∣∣ =
3x

− 2
x

= −3

2
x2
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Now that we know u′1 and u′2, we can determine u1 and u2 by integration. We’re not concerned
with the integration constants.

u1(x) =
3

2
x

u2(x) = −1

2
x3

Hence, the particular solution is

yp =
3

2
x2 − 1

2
x2 = x2.

Therefore, the general solution is

y(x) = C1x+ C2x
−1 + x2.

We can now determine the two arbitrary constants, C1 and C2, by applying the provided
boundary conditions, y(1) = 1 and y(2) = 1. The result is the following system of equations.

y(1) = C1 + C2 + 1 = 1

y(2) = 2C1 +
C2

2
+ 4 = 1

Solving the system gives us C1 = −2 and C2 = 2. Therefore,

y(x) = −2x+
2

x
+ x2.

Figure 4: Plot of the solution for −5 < x < 5.
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Part (s)

y3(y′)2y′′ = −1

2
[y(0) = y′(0) = 1]

This ODE is second-order and autonomous, meaning the independent variable x does not appear
in the equation. We can hence make the substitution,

y′(x) = u(y)

y′′(x) =
du

dy

dy

dx
= u′(y)u(y),

to reduce the equation’s order and make it easier to solve. Plugging these expressions into the
ODE gives us

y3u2u′u = −1

2
,

which can be solved by separation of variables.

y3u3
du

dy
= −1

2

Separate variables.

u3 du = −1

2
y−3 dy

Integrate both sides.
1

4
u4 =

1

4
y−2 +

C

4

Multiply both sides by 4.

u4 =
1

y2
+ C

Take the fourth root of both sides to solve for u.

u(y) = 4

√
1

y2
+ C

Now that we have u, change back to the original variable y.

y′(x) = 4

√
1

y2
+ C

At this point, use the provided boundary conditions, y(0) = 1 and y′(0) = 1, to determine the
integration constant C.

y′(0) = 4

√
1

[y(0)]2
+ C → 1 = 4

√
1 + C → C = 0

The ODE has thus been simplified to

dy

dx
= 4

√
1

y2
=

1

y1/2
,

which can be solved by separation of variables.

y1/2 dy = dx
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Integrate both sides.
2

3
y3/2 = x+B

Use the boundary condition y(0) = 1 to determine B.

2

3
= B

So we have
2

3
y3/2 = x+

2

3
.

Multiply both sides by 3/2.

y3/2 =
3

2
x+ 1

Raise both sides to the 2/3 power to solve for y. Therefore,

y(x) =

(
3

2
x+ 1

)2/3

.

Figure 5: Plot of the solution for −3 < x < 3.
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Part (t)

xy′ = y +
√
xy

Divide both sides by x.

y′ =
y

x
+

1

x

√
xy

Bring x inside the square root.

y′ =
y

x
+

√
y

x

The right side prompts the substitution,

u =
y

x
→ xu = y

u+ x
du

dx
=

dy

dx
,

Plugging these expressions into the ODE gives us

u+ x
du

dx
= u+

√
u.

Cancelling u, we have here an ODE we can solve with separation of variables.

x
du

dx
=

√
u

Separate variables.

u−1/2 du =
dx

x

Integrate both sides. Use ln C for the integration constant.

2u1/2 = ln |x|+ ln C

Combine the logarithms.
2u1/2 = ln C|x|

Because C is arbitrary, we can drop the absolute value sign. Divide both sides by 2.

u1/2 =
1

2
ln Cx

Square both sides to solve for u.

u(x) =
1

4
(ln Cx)2

Change back now to the original variable y.

y

x
=

1

4
(ln Cx)2

Multiply both sides by x to solve for y. Therefore,

y(x) =
x

4
(ln Cx)2.
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Part (u)

(xy)y′ + y ln y = 2xy [try an integrating factor of the form I = I(y)]

In order for an integrating factor of the form I = I(y) to work, the ODE has to instead be

xy′ + y ln y = 2xy.

I confirmed this with one of the authors, Mr. Bender.

Solution by an Integrating Factor

Bring 2xy to the left side and factor y.

xy′ + y(ln y − 2x) = 0

Multiply both sides by the integrating factor I(y).

xI(y)y′ + yI(y)(ln y − 2x) = 0

For this ODE to be exact, we require that

∂

∂y
[yI(y)(ln y − 2x)] =

∂

∂x
[xI(y)].

The right side is a function of y only. For the left side to be as well, yI(y) must be equal to a
constant. An appropriate integrating factor is thus

I(y) =
1

y
.

The ODE becomes
x

y
y′ + ln y − 2x = 0,

which is exact. This means there exists a potential function ϕ = ϕ(x, y) such that

∂ϕ

∂x
= ln y − 2x (1)

∂ϕ

∂y
=

x

y
. (2)

Substituting these into the ODE, we get

∂ϕ

∂x
+

∂ϕ

∂y

dy

dx
= 0.

The differential of a function ϕ(x, y) is defined as

dϕ =
∂ϕ

∂x
dx+

∂ϕ

∂y
dy.

Dividing both sides by dx gives the relationship between the total derivative of ϕ and the partial
derivatives of ϕ.

dϕ

dx
=

∂ϕ

∂x
+

∂ϕ

∂y

dy

dx
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Hence, the ODE simplifies to
dϕ

dx
= 0.

Integrate both sides with respect to x to obtain the general solution.

ϕ = A,

where A is an arbitrary constant. Our task now is to determine the potential function ϕ from
equations (1) and (2). Integrate equation (1) partially with respect to x.

ϕ(x, y) =

� x ∂ϕ

∂x

∣∣∣∣
x=s

ds+ f(y)

=

� x

(ln y − 2s) ds+ f(y)

= x ln y − x2 + f(y)

To determine the arbitrary function f(y), differentiate this expression partially with respect to y
and compare it with equation (2).

∂ϕ

∂y
=

x

y
+ f ′(y)

We see that f ′(y) has to equal zero, which means f(y) = B, a constant. The potential function is
consequently

ϕ(x, y) = x ln y − x2 +B,

which means the general solution to the ODE is

x ln y − x2 +B = A.

Subtract B from both sides and use a new arbitrary constant C.

x ln y − x2 = C.

This equation can be solved for y explicitly. Bring x2 to the right side.

x ln y = C + x2

Divide both sides by x.

ln y = x+
C

x

Exponentiate both sides to solve for y. Therefore,

y(x) = ex+C/x.
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Solution by a Substitution

xy′ + y ln y = 2xy

Divide both sides of the ODE by xy.

y−1y′ +
1

x
ln y = 2

Make the substitution,

u = ln y.

Take the derivative of both sides with respect to x to find out what y′ is in terms of the new
variable.

du

dx
= y−1 dy

dx

Plug these expressions into the ODE.
du

dx
+

1

x
u = 2

This is a first-order inhomogeneous equation that we can solve with an integrating factor I.

I = e
� x 1

s
ds = eln x = x

Multiply both sides of the ODE by the integrating factor.

x
du

dx
+ u = 2x

The left side can now be written as d/dx(Iu) as a result of the product rule.

d

dx
(xu) = 2x

Integrate both sides with respect to x.

xu = x2 + C

Divide both sides by x to solve for u.

u(x) = x+
C

x

Now that we have u, change back to the original variable y.

ln y = x+
C

x

Exponentiate both sides to solve for y. Therefore,

y(x) = ex+C/x.
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Part (v)

(x sin y + ey)y′ = cos y

Bring cos y to the left side.
− cos y + (x sin y + ey)y′ = 0

This ODE has the form,

M(x, y) +N(x, y)
dy

dx
= 0.

Check to see whether My = Nx. If it’s not, we’ll have to use an integrating factor.

∂M

∂y
= sin y

∂N

∂x
= sin y

The two partial derivatives are equal, which means the ODE is exact. This implies that there
exists a potential function ϕ(x, y) such that

∂ϕ

∂x
= M(x, y) (1)

∂ϕ

∂y
= N(x, y). (2)

Substituting these relations into the ODE gives

∂ϕ

∂x
+

∂ϕ

∂y

dy

dx
= 0.

Recall that the differential of a function of two variabes, ϕ = ϕ(x, y), is this.

dϕ =
∂ϕ

∂x
dx+

∂ϕ

∂y
dy

Dividing both sides by dx gives us the relationship between the total derivative of ϕ and the
partial derivatives of it.

dϕ

dx
=

∂ϕ

∂x
+

∂ϕ

∂y

dy

dx

Substitution into the ODE reduces it to
dϕ

dx
= 0.

Integrating both sides with respect to x gives the general solution.

ϕ = A,

where A is an arbitrary constant. Our task now is to find this potential function ϕ(x, y) using
equations (1) and (2).

∂ϕ

∂x
= − cos y (1)

∂ϕ

∂y
= x sin y + ey (2)
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We will solve for ϕ by integrating both sides of equation (1) partially with respect to x. Note that
we would get the same answer for ϕ integrating both sides of equation (2) partially with respect
to y.

ϕ(x, y) =

� x ∂ϕ

∂x

∣∣∣∣
x=s

ds+ f(y)

=

� x

− cos y ds+ f(y)

= −x cos y + f(y)

Differentiate this expression we just obtained with respect to y.

∂ϕ

∂y
= x sin y + f ′(y)

Comparing this result with equation (2), we see that f ′(y) has to be equal to ey in order to be
consistent, which means f(y) = ey + C. We thus have

−x cos y + ey + C = A

for the general solution to the ODE. Bring C to the left and use a new arbitrary constant B.
Therefore,

−x cos y + ey = B

is the general (albeit implicit) solution for y(x).
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Part (w)

(x+ y2x)y′ + x2y3 = 0 [y(1) = 1]

This ODE can be solved by separation of variables.

x(1 + y2)
dy

dx
+ x2y3 = 0

Bring x2y3 over to the right.

x(1 + y2)
dy

dx
= −x2y3

Separate variables.
1 + y2

y3
dy = −x dx

Integrate both sides. � y (
s−3 +

1

s

)
ds = −1

2
x2 + C

Evaluate the integral on the left.

1

−2
y−2 + ln |y| = −1

2
x2 + C

Use the given boundary condition, y(1) = 1, to determine C.

−1

2
= −1

2
+ C → C = 0

So we have
1

2

(
x2 − 1

y2

)
+ ln |y| = 0.

In order to obtain a single positive value of y when x = 1, we restrict the solution to positive
values of y by dropping the absolute value sign.

1

2

(
x2 − 1

y2

)
+ ln y = 0

Do note, though, that because we divided by x when we separated variables, the solution for y is
not defined when x = 0. Therefore,

1

2

(
x2 − 1

y2

)
+ ln y = 0, x ̸= 0.
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Part (x)

(x− 1)(x− 2)y′ + y = 2 [y(0) = 1]

Divide both sides (x− 1)(x− 2) to isolate the y′ term.

y′ +
1

(x− 1)(x− 2)
y =

2

(x− 1)(x− 2)

This is a first-order ODE that can be solved with an integrating factor I.

I = e
� x 1

(s−1)(s−2)
ds

To evaluate the integral, use partial fraction decomposition.

1

(s− 1)(s− 2)
=

A

s− 1
+

B

s− 2

Our task here is to determine A and B. Multiply both sides by the least common denominator.

1 = A(s− 2) +B(s− 1)

Choose two random values of s to get two equations that we can use to solve for A and B.

s = 2 : 1 = B(1)

s = 1 : 1 = A(−1)

The system yields A = −1 and B = 1, so the integral we have to evaluate in the exponent becomes

� x(
− 1

s− 1
+

1

s− 2

)
ds = − ln (x− 1) + ln (x− 2) = ln

x− 2

x− 1
.

Hence,

I = eln
x−2
x−1 =

x− 2

x− 1
.

Multiply both sides of the ODE by this integrating factor.

x− 2

x− 1
y′ +

1

(x− 1)2
y =

2

(x− 1)2

The left side is now exact and can written as d/dx(Iy) as a result of the product rule.

d

dx

(
x− 2

x− 1
y

)
=

2

(x− 1)2

Integrate both sides of the equation with respect to x.

x− 2

x− 1
y = − 2

x− 1
+ C

Multiply both sides by x− 1 and divide both sides by x− 2 to solve for y.

y(x) = − 2

x− 2
+

C(x− 1)

x− 2
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Combine the two terms into one.

y(x) =
C(x− 1)− 2

x− 2

Use the provided initial condition, y(0) = 1, to determine C.

1 =
C(−1)− 2

−2
→ C = 0

Therefore,

y(x) =
2

2− x
.

Figure 6: Plot of the solution for −3 < x < 5.
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Part (y)

y′ = 1/(x+ ey)

This ODE for y(x) is quite difficult, so invert both sides of the equation.

dy

dx
=

1

x+ ey
→ dx

dy
= x+ ey

Bring x over to the left side.
dx

dy
− x = ey

This is a simpler first-order inhomogeneous ODE for x that can be solved with an integrating
factor I. x is now the dependent variable, and y is now the independent variable.

I = e
� y −1 ds = e−y

Multiply both sides of the equation by I.

e−y dx

dy
− e−yx = 1

The left side is now exact and can be written as d/dy(Ix).

d

dy
(e−yx) = 1

Integrate both sides with respect to y.

e−yx = y + C

Multiply both sides by ey to solve for x.

x(y) = ey(y + C)

This is an implicit solution for y.
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Part (z)

xy′ + y = y2x4

This is a Bernoulli equation. Start off by getting rid of the term multiplying y′. Divide both sides
of the equation by x.

y′ +
1

x
y = y2x3

Now divide both sides by y2.

y−2y′ +
1

x
y−1 = x3

Make the substitution,

u = y−1

du

dx
= (−1)y−2 dy

dx
→ −du

dx
= y−2 dy

dx
.

Plug these expressions into the ODE.

−du

dx
+

1

x
u = x3

This is a first-order ODE that can be solved with an integrating factor. Multiply both sides by
−1.

du

dx
− 1

x
u = −x3

The integrating factor is this.

I = e
� x − 1

s
ds = e− lnx = x−1

Multiply both sides by I.
1

x

du

dx
− 1

x2
u = −x2

The left side is now exact and can be written as d/dx(Iu) as a result of the product rule.

d

dx

(
1

x
u

)
= −x2

Integrate both sides with respect to x.

1

x
u = −1

3
x3 + C

Multiply both sides to solve for u.

u(x) = −1

3
x4 + Cx

Change back now to the original variable y.

1

y
= −1

3
x4 + Cx

Invert both sides to solve for y and then simplify the result.

y(x) =
1

−1
3x

4 + Cx
=

3

x(3C − x3)
=

3

x(A− x3)
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